
1 October 1997 Delphi Informant

October 1997, Volume 3, Number 10

The Persistence
of Objects
Presenting a Generic,

Registry-Aware Component

Cover Art By: Louis Lillegard

ON THE COVER

5 The Persistence of Objects — Robert Vivrette
Users hate to perform boring tasks over and over again. And so do
programmers! Learn to use Delphi’s RTTI capabilities to create generic,
object-oriented, registry-aware components — without drowning in
drudgery yourself.

FEATURES

14 Informant Spotlight
Down to the Metal — Jay Cole
Here’s an exotic one. Tired of C /C++ programmers claiming suprema-
cy in low-level programming? Would you believe using assembly to cre-
ate a dynamic (run-time) compiler?

22 Greater Delphi
What’s Multi-Generational
Architecture, Anyway? — Bill Todd
This fifth and final installment explains what really sets InterBase apart,
by exposing the problems its structure was designed to solve. Feel lucky?
Grab a wad of cash, and get ready for “ATM roulette.”

25 DBNavigator
Trying on TeeChart — Cary Jensen, Ph.D.
There’s more to Delphi 3 than its “marquee players.” Among the
unsung is TeeChart, which builds charts at either design time or run
time, from any data available to your application. Here’s how.

30 At Your Fingertips
Searching Multiple Directories, etc. — John P. Gambrell
This month’s tips include the finer points of the FileSearch
function and the importance of good parenting.

REVIEWS
32 The Birth of Raptor

Product Review by Alan Moore, Ph.D.
37 Hidden Paths of Delphi 3

Book Review by Alan Moore, Ph.D.
37 Special Edition Using Delphi 2 and

Special Edition Using Delphi 3
Book Review by Alan Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
4 Newsline
40 File | New by Richard Wagner

2 October 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
TCompLHA 2.0 and TCompress Component Set 3.5 Ship from SPIS Ltd

SPIS Ltd, makers of the

TCompress Component Suite
for Delphi and C++Builder,
has released TCompLHA 2.0
and TCompress Component
Set 3.5.
TCompLHA supports

Delphi 1, 2, and 3, as well as
C++Builder. It helps create
and manage archives compati-
ble with the freeware LHArc
and LHA utilities — archives
which can also be used by util-
ities including WinZip.
One-step methods such as
Scan, Compress, Expand, Delete,
and Verify simplify archive
management. Key properties
such as ArchiveName,
CompressionMethod, Confirm,
and FilesToProcess provide
control over how files are
processed, including wildcard
expansion and user interface
customization. TCompLHA
also offers segmented (multi-
disk) archive processing.

Additional features such as
full archive verify and safe
mode processing enable
TCompLHA to be used in
communications applications
for the Internet.

TCompLHA ships with a
demonstration, source
examples, and Help files.

SPIS Ltd also announced a
new version of their com-
pression components for
Delphi 1, 2, and 3, and
C++Builder. In addition
to new Delphi 3 and
C++Builder support,
TCompress 3.5 adds a com-
pression method, a rich text
BLOb compression compo-
nent, and new utility func-
tions for more flexible
archive management.
TCompress 3.5 provides
native components for the
creation of multi-file com-
pressed archives, as well as
database, file, resource, and
in-memory compression
using streams. Two com-
pression methods (RLE and
LZH) are built in, with
hooks for adding custom
compression formats.

TCompress 3.5 also
includes drop-and-play
components for automatic
database BLOb, image, rich
text, and memo compres-
sion, based on the Delphi
VCL’s TDBMemo,
TDBRichText, and
TDBImage components.
TCompress 3.5 includes a
demonstration, source code,
examples, and Help files.

SPIS Ltd
Price: TCompLHA 2.0 is US$65 for
registration; US$40 for TCompLHA com-
ponent source. TCompress Component
Set 3.5 is US$65 for registration;
US$40 for TCompress component
source; and US$34 for source of the
compressed DB controls.
Fax: +64-3-384-5138
E-Mail: software@spis.co.nz
Web Site: http://www.spis.co.nz
Design Systems’ New VCL Component Collection Adds Time-Saving Features

Design Systems announced

Remember This, a VCL com-
ponent collection that allows
developers to add options and
settings to screens in Delphi
applications.
With Remember This, devel-

opers can modify any dialog
box to remember a user’s
favorite settings, to see when
any component on a form has
been modified, and to roll
back those modifications.

Remember This also provides
simpler access to Windows
.INI files and the registry.

Similar products require
retrofitting existing applica-
tions into their framework, but
Remember This works with
new or existing applications.
Remember This uses

Delphi’s Run-Time Type
Information (RTTI) to auto-
matically handle any compo-
nent. It relies on a unique and
extensible StateSaver technolo-
gy to customize the saving of
all Delphi standard controls.

Remember This is available
in a Delphi edition; a
C++Builder edition is
scheduled for release in the
3rd quarter of 1997. Both
versions include online Help,
sample applications, unlimited
support, and a 60-day money-
back guarantee. A trial ver-
sion is available from Design
Systems’ Web site.
Design Systems
Price: The developers kit of the Delphi
or C++Builder version is US$119;
with source code it’s US$179. A bun-
dle of both versions is US$139; the
bundle with source code is US$199.
Phone: (508) 888-4964
E-Mail: support@dsgnsystms.com
Web Site: http://www.-
dsgnsystms.com

3 October 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

IISSBBNN:: 0-672-31114-3
PPrriiccee:: US$29.99 (599 pages)
PPhhoonnee:: (800) 545-5914 or

(317) 581-5801

TTeeaacchh YYoouurrsseellff DDeellpphhii 33
iinn 1144 DDaayyss

Dan Osier, et al.
Sams Publishing
TurboPower Launches Abbrevia; Releases Free Delphi 3 Upgrades
u
P
F
a

T
P
3
a
c
P
(
E
W

TurboPower
Software Co. has
released Abbrevia 1.0,
enabling Delphi pro-
grammers to access
and manipulate
PKZIP-compatible
files.

Abbrevia can create
ZIP files; it includes
access to advanced fea-
tures such as disk span-
ning, self-extracting
archives, ZIP-file com-
ments, and password
protection. With disk
spanning, large ZIP
files can be automati-
cally spread across a series of
floppy disks. A user receiv-
ing a self-extracting ZIP file
can expand its contents by
executing a small Windows
program bound with the
ZIP file.

In addition, Abbrevia
includes visual components
that enable programmers to
offer access to ZIP files
graphically in their pro-
grams. It also has API-level
routines for compressing and
decompressing streams of
data on-the-fly.

Unlike other libraries for
handling ZIP files, Abbrevia
components are written in
Delphi, and will compile
directly into an application.
Abbrevia requires no addi-
tional files be shipped with
an application that uses its
components. This product
ships with documentation,
online Help, free technical
support, and a 60-day
money-back guarantee.
TurboPower also

announced the availabil-
ity of free Delphi 3
upgrades for owners of
LockBox, OnGuard,
Orpheus, and SysTools.
These upgrade patches
can be downloaded from
http://www.turbopower.-
com/updates.

In addition to the
patches, TurboPower
has released a list of the
changes necessary to
use its flagship prod-
uct, Async Professional,
with Delphi 3. Free

pdates for other Turbo-
ower products, including
lashFiler, will be avail-
ble soon.

urboPower Software Co.
rice: Abbrevia 1.0 (supports 16- and
2-bit development with Delphi 1, 2,
nd 3), US$199. Current TurboPower
ustomers receive a 20 percent discount.
hone: (800) 333-4160 or

719) 260-9639
-Mail: info@turbopower.com
eb Site: http://www.turbopower.com
LMD Innovative Ships LMD-Tools 3.0 for Delphi

LMD Innovative of

Siegen, Germany has
released LMD-Tools 3.0, a
component package of over
100 native Delphi VCL
components and routines.
System, multimedia, visual,
data sensitive, and dialog
components are available.

Version 3 adds new com-
ponents, such as a text edi-
tor with RTF support,
dockable toolbars, 10 new
button classes, and unique
handling of data containers.
Any component in the set
can integrate with Delphi
1, 2, or 3.

About 20 components in
the set can be used to
manipulate standard system
behavior (system menu,
caption bars, exploding
effects for forms, appear-
ance of hints, timerpool for
sharing timers, and more).

LMD-Tools features data
container supporting
resource files, form data, or
custom formats (including
compression). Several com-
ponents can be linked to
these containers to share
resources, and to make an
application smaller and
faster.

It also offers standard
dialog boxes for immediate
use, multimedia compo-
nents (e.g. for playing
.WAV files, creating screen-
savers, or supporting joy-
sticks), and a design-time
helper for hiding non-visual
components on a form.

Trial and demonstration
versions are available from
the LMD Innovative
Web site.

LMD Innovative
Price: Standard Edition, US$99;
Professional Edition, US$169.
Phone: +49-271-355489
E-Mail: sales@lmd.de
Web Site: http: //www.lmd.de

4 October 1997 Delphi Informant

News
L I N E

Oc tobe r 1997

Borland Launches AS/400
Client/Server Developer

Program with IBM
Borland announced a developer-

relations and marketing program in
conjunction with IBM’s AS/400

Division. A three-part partnership
program, AS/400 ADI assists

Borland and IBM AS/400 developers
in supporting, registering, and mar-
keting their client/server applications

on the IBM AS/400 platform.
As part of the partnership, Borland
and IBM are hosting the ADI Web

site that includes technical informa-
tion on Borland’s client/server

development tools, as well as how
to deliver applications to the

AS/400. Developers interested in
registering their applications on the
ADI Web site may send an e-mail to

ADI@corp.borland.com, or visit
http://www.borland.com/-

borland400/.
Borland and the IBM AS/400

Division also plan to launch a world-
wide series of technical seminars in
more than 15 cities on client/server

development for the AS/400.
Borland’s AS/400 development

tools include Delphi/400
Client/Server Suite and

C++Builder/400 Client/Server Suite.
Borland’s Yocam Announces New Business Strategy

Nashville, TN — Borland’s

Chairman and CEO Delbert
W. Yocam outlined a new
strategy to establish Borland as
the leading provider of tools
and technologies to help users
build corporate InfoNets. An
extension of their Golden
Gate strategy, this InfoNet
strategy combines Borland’s
object-oriented development
tools, middleware technolo-
gies, and open architecture to
enable developers to create
applications that provide
cross-platform access and
analysis of data over intranets,
extranets, and the Internet.

According to Yocam,
Borland is qualified to deliver
the technologies needed to
help build next-generation
information networks. He
believes Borland can offer the
tools and middleware for the
information application life-
cycle, including development,
analysis, reporting, deploy-
ment, and management of
information resources and
applications.

Yocam noted the key
foundations of the InfoNet
architecture include
enterprise-class applica-
tion development tools,
Java/Web integration, and
rich information analysis.

In addition, Yocam said the
forces driving the need for
InfoNets include: the adop-
tion of thin-client, browser-
based applications; increas-
ing growth of Windows NT
as an InfoNet application
server platform; the maturity
of Java as a cross-platform
language; the emergence of
low-cost network computers
and network PCs; and
expanded deployment of
Decision Support Solutions
(DSS) and Online Analytic
Processing Server (OLAP)
applications, as a result of
the growth of the Internet.
Borland Returns to Profitability

Scotts Valley, CA — Borland’s

first quarter revenues for Fiscal
1998 were US$41,970,000,
compared to revenues of
US$38,146,000 for the first
quarter of the previous fiscal
year. (First quarter revenues
were up 10 percent over
the first quarter of fiscal
year 1997.)

Net income for the first
quarter of fiscal year 1998
was US$79,000, break-even
in terms of earnings per
share.

This is compared with a
net loss of US$21,809,000
(or US$.60 per share) for the
first quarter of fiscal 1997.

The company’s cash bal-
ance on June 30, 1997 was
US$76,600,000, compared
to an ending cash balance of
US$54,400,000 on March
31, 1997.

The increase in cash was
primarily the result of the
closing of the privately
placed equity financing of
approximately US$25 mil-
lion, and exercises of
employee stock options of
about US$1.6 million.

When Delbert W. Yocam,
Chairman and CEO,
joined Borland in
December 1996, he
pledged a return to
profitability in fiscal year
1998, which began on
April 1, 1997. To achieve
this goal, he cut 30 percent
of the workforce, and
initiated new cost-
reduction programs.
Borland Announces JBuilder Products

Nashville, TN — Borland

announced its JBuilder fami-
ly of visual development tools
for Java. JBuilder Standard
and JBuilder Professional are
shipping now, and JBuilder
Client/Server Suite is sched-
uled for release later this year.

All three versions of
JBuilder feature JavaBean
component creation, a scal-
able database architecture,
visual development tools, and
the ability to produce 100%
Pure Java applications,
applets, and JavaBeans.

As part of Borland’s Golden
Gate strategy, JBuilder also
supports standards such as
JDK 1.1, JFC, AFC, RMI,
CORBA, JDBC, ODBC,
and most database servers.
JBuilder also provides an
open architecture for adding
third-party tools and
JavaBean components.

JBuilder’s developer-specific
features include the Borland
RAD WorkBench, pure Java
two-way tools, productivity
wizards, a new application
browser, a graphical debugger
and SmartChecker compiler,
as well as Local InterBase and
Borland SQL Tools.

JBuilder Standard is
US$99.95. JBuilder
Professional is US$299.95.
Owners of other Borland
tools can purchase JBuilder
Professional for US$249.95.
Pricing for JBuilder
Client/Server Suite was
unavailable at press time. For
more information, call
Borland at (800) 233-2444.
Borland Announces Entera Update

Nashville, TN — Borland

has updated its Entera
intelligent middleware,
which supports Delphi,
ODBC data connectivity,
and Gradient/DCE on
Windows NT.

The company also
announced it has extended
Entera 3.2’s platform sup-
port with a new port to
IBM MVS/Open Edition.

Borland Entera is an inde-
pendent framework for
building, managing, and
deploying middle-tier
client/server applications.

The new update to Entera
3.2 is available to all regis-
tered Borland Entera sup-
port subscribers.

Borland plans to ship a
new version of Entera later
this year.

For more information,
visit Borland’s Web site,
located at http://www.-
borland.com.

5 October 1997 Delphi Informant

The Persistence of Objects
Make Your Applications Registry-Aware with a
Generic Object-Oriented Component

On the Cover
Delphi 3

By Robert Vivrette
Your parents taught you to be persistent. It’s the only way to get noticed
these days! Well, persistence isn’t just a good quality for humans; computer

users have come to expect a certain level of persistence in the programs they
use as well.
Think about the applications you use every
day. No doubt each has its own problems
with persistence that annoy you. For exam-
ple, I use CompuServe for Windows to man-
age my CompuServe mail, and I am always
irritated at the number of places within the
program where I have to perform boring
tasks over and over again; when I launch the
program, it never leaves me where I left off. I
have to click on the Mail Center button to
look at my list of incoming mail; and when-
ever I add attachments to messages, the Open
dialog is never looking at the right directory.
Virtually every program I use has these kinds
of minor shortcomings. I’m sure when they
were developed, saving the existing state of
certain controls was not considered a priority.
In fact, many programmers consider such
programming to be drudgery.

Yet programming an application to be persis-
tent is a vital piece of your job as an applica-
tion developer. Your application might be the
greatest thing since they put soap in Brillo
pads, but if it requires users to unnecessarily
provide repetitive input to the program, it
will quickly become an annoyance. Here are
just a few of the kinds of information that a
program should save:

User information (name, address, pass-
words, etc.)
Sizes and locations of forms (including
the main application form)
States of program options
History lists of file Open and Save dialogs
Last directory visited by Open and Save
dialogs
History list of recently-accessed docu-
ment files
Custom wildcard specifications for file
Open and Save dialogs
Typefaces used in the application
Last visited tab in tab-sheet controls

The list is virtually endless, and I could go on
with additional items. Probably the best indi-
cator of when you have a problem with per-
sistence is to watch a user run your program
repeatedly. How many times did they have to
perform the same steps? How many times did
they have to resize a form, or change to
another tab? Every place where there was a
repetitive action is a place where you could
save that state from the previous execution of
the application.
The Windows Registry
32-bit Windows provides us with an excellent
place to store persistent data. It’s an internal
database of information managed by Windows
called the registry. Before the registry existed,
application developers stored persistent data in
.INI files. While that technique can still be
used, it’s no longer recommended. The registry
adds capabilities that don’t automatically exist
in .INI files (such as storing data for different
users of the same machine). However, some
habits die hard and many application develop-
ers still prefer .INI files. For the purpose of
this article, we are going to be dealing with

On the Cover
only the registry, but if you’re stuck on .INI files (or are devel-
oping 16-bit applications) the same principles apply.

The format of the registry is a tree structure. Each branch
of the tree (or key in registry terminology) holds informa-
tion about a particular user, application, or piece of hard-
ware. At the end of these keys, there are Name/Value pairs.
This is where persistent data is saved. For example, for the
HKEY_CURRENTUSER\ControlPanel\Colors key, there
is a list of key names (e.g. ActiveBorder, ActiveTitle,
AppWorkspace, etc.) that have color assignments as values.
When you open the Control Panel and access the colors
applet, Windows retrieves these color assignments as your
color options.

This article assumes you have a basic understanding of how the
registry works, so before we go any farther, I must provide this
warning: The registry holds data essential to the operation of
Windows; if you don’t know what you’re doing and you acci-
dentally corrupt data in the registry, you quite possible might
render Windows inoperative. Therefore, please make certain you
understand how the registry functions and make backups of the
registry before doing any experimentation. Windows 95 and
NT have a program called RegEdit to manipulate the registry
database. The online Help for RegEdit will help you if you have
questions on its use. With that out of the way, let’s go on.

So we want to save persistent application data, and we want
to use the registry to hold that data. How can you get a com-
ponent to save pieces of itself (properties, values, etc.) auto-
matically? Well, there have been many efforts in the Delphi
community to create persistent objects, and to understand
the issues a bit more, lets look at some of these along with
their advantages and disadvantages.
Subclassed Registry-Aware Components
In this scheme, a developer creates a component that is aware
of the registry, and has the ability to save and load data to
and from the registry. Say for example that you wanted an
Edit component that automatically saved the value of its Text
property to a certain registry key. Using this technique, you
would create a new component (descended from a TEdit),
and add support for the registry. This support would likely
be in the form of two methods (one each to save and restore
the Text property to the registry), as well as some new prop-
erty that lets the user define what key to use in the registry.

The result would be something named, say, TRegistryEdit. It
would look and behave exactly as an Edit component, but
would have one additional property named, say, RegistryKey.
To use the control, a developer simply takes a TRegistryEdit
control, drops it on the form, provides the name of a key in
RegistryKey and then adds a line of code in the FormCreate
and FormDestroy methods to access the registry load and save
methods of the new subclassed control.

What are the disadvantages of such an approach? There are
plenty. The key one is that you have to create a new sub-
classed control for every component to which you want to
6 October 1997 Delphi Informant
add registry support. If you want to add registry support to
ListBoxes, ComboBoxes, StringGrids, RadioButtons, and
CheckBoxes, you will have to create a new subclassed con-
trol for each of these and add the same registry support code
that you did for TRegistryEdit. The code you add would be
essentially identical, but would of course save the checked
state of a CheckBox and RadioButton, the list of items in a
ListBox and ComboBox, etc. However, when you add all
these new controls to your form, you’re adding quite a lot of
redundant registry support code. Remember, each sub-
classed control you added had its own registry support! Also,
your Component palette will have to house all these new
registry-aware components.

In addition, you still will need to manage (in code) each of
these controls. Your FormCreate method might start to
look like this:

procedure TForm1.FormCreate(Sender: TObject);

begin
Edit1.LoadFromRegistry;

Edit2.LoadFromRegistry;

Edit2.LoadFromRegistry;

Edit2.LoadFromRegistry;

ListBox1.LoadFromRegistry;

StringGrid1.LoadFromRegistry;

CheckBox1.LoadFromRegistry;

CheckBox2.LoadFromRegistry;

CheckBox3.LoadFromRegistry;

CheckBox4.LoadFromRegistry;

CheckBox5.LoadFromRegistry;

end;

Obviously, this adds a lot of maintenance responsibilities when
developing the application, and it will be prone to error (particu-
larly if you’re saving and restoring dozens or hundreds of values).

Another disadvantage with this approach is that the new
registry-aware control is only going to save data that you as
the component developer have programmed it to save. For
many controls this is obvious: An Edit component saves its
Text property, a CheckBox saves its Checked state, and so on.
But what if someone using your registry-aware control wants
to save the Edit component’s ShowHint property, or the
CheckBox’s Enabled property? They probably would have to
toss your control and make their own subclassed version sav-
ing the values they want to save. Obviously, this is not a
great example for promoting code re-use.

Now, granted this kind of idea could have worked only if the
Delphi development team decided to add automatic registry
support to the component hierarchy. They could have added
some kind of RegistryKey property in the TPersistent class (or
somewhere else nearby) and then all components descending
from it would have that same basic behavior. However, it
would have clearly made the VCL a bit more cluttered. Who
knows, they may have not even thought of it. Regardless, it
isn’t there now so we have to find another solution.
A Better Solution
Let’s step back a bit and look at the problem with a broad-
er perspective. We want to save data related to controls,

On the Cover
but as we already learned, we don’t want to have to create
new registry-aware versions of each control. This means
that our improved solution must work with unmodified
components and should require the absolute minimum
amount of maintenance.

Enter the Persistent Object Manager (ObjMgr). For those
of you who have used my IniOut Component Property
Manager, the Persistent Object Manager will be familiar.
Although IniOut is a shareware product, I wanted Delphi
programmers to get a feel for some of the concepts it uses.
As a result, I created a completely new component, based
loosely on the ideas used in IniOut. That way, I can provide
all the source code necessary to show you how it works in
this article without sabotaging the success of IniOut.

First, let’s go through a brief example of how ObjMgr works.
Then we can dig into how it’s implemented in code.
Figure 2: The property editor.

Figure 3: Accessing the controls.
Using the Persistent Object Manager
Let’s say we are writing a simple piece of code that will save
the name of the program’s user and some other related
details. This form might look something like Figure 1.

The first time your application runs, you want to gather this
information and save it to the registry. You will probably also
want the ability for the user to get back to this form to modi-
fy or update the information. Granted, you could just create
an instance of a TRegistry object and write out the values
when the form closes and read them back in when it opens
again. However, the objective here is to not have to write or
manage this kind of code, particularly for each component
on the form.

Instead, let’s add an ObjMgr component to the form. It’s a
non-visual component, and once you place it on a form and
double-click it, you will see the property editor shown in
Figure 2. This is the project we’re going to create in this arti-
cle. The ListBox on the left shows what component proper-
ties you’re managing. For each item managed, you will pro-
vide data in the controls on the right. We add a new item by
clicking on the Add button. The Component combo box
enables you to pick a control on the current form. Note that
Figure 1: A sample form.

7 October 1997 Delphi Informant
by “dropping down” this combo box, we automatically see all
the controls that are present on the form (see Figure 3).

We will start with the User Name edit box (edtName).
When you select that component, the Property combo box
is populated with all the supported properties of that con-
trol (see Figure 4). In this case, we want to manage the Text
property. After choosing this property, we provide the reg-
istry subkey that this value will be saved as. Let’s enter
Software\Informant\ObjMgrDemo\UserData for this value.
Then, we provide the name of this particular key (in this
Figure 4: Viewing the supported properties.

Figure 5: A completed property editor.

On the Cover

Figure 6: All the items we want to manage.

Figure 7: The running application.

Figure 8: Enter data then close the application.

Figure 9: The data in RegEdit.
case, we’ll call it UserName). Lastly, we have a field that allows
us to provide a default value for the property. It wouldn’t
make sense to provide a default for a user name, so we will
leave this blank. After all these steps have been done, the
property editor would look like Figure 5.

Now, let’s add all the other items we want to manage.
Specifically, we would want to save the Text properties of the
Address, City/State/Zip, and Stereo Brand Name edit boxes.
Also, let’s save the Position property of each of the two track
8 October 1997 Delphi Informant
bars (Volume and Balance). Note that the registry subkey
value will be the same for each item (more on this later).
After specifying each of these, the property editor would look
like Figure 6.

We dismiss the property editor by clicking OK. Now there is
only one thing left to do: We need to tell ObjMgr when to
read values from the registry and when to save them. The
FormCreate and FormDestroy methods are good spots; all we
do is add a single line of code to each to access the Load and
Save methods of ObjMgr as follows:

procedure TForm1.FormCreate(Sender: TObject);

begin
ObjMgr1.Load;

end;

procedure TForm1.FormDestroy(Sender: TObject);

begin
ObjMgr.Save;

end;

Now run the application (see Figure 7). See what hap-
pened? ObjMgr set up the form as we requested through
its property editor. Because this is the first time the pro-
gram has been executed, there is no entry in the registry
for any of this data. Therefore each control was given its
default values.

Now let’s enter data in each field (see Figure 8) and close
the application. When the application closed, the
FormDestroy method was triggered, which told ObjMgr to
save its managed properties to the registry. Now if you run
RegEdit, you’ll note that the registry data in Figure 9 has
been entered.

On the Cover

procedure TObjMgrDialog.FormShow(Sender: TObject);

var
a : Integer;

begin
// Add the form name to the list so we
// can access its properties.
cmbComponent.Items.Add(TheObjEd.Designer.Form.Name);

// Populate combo with all components on form.
with TheObjEd.Designer.Form do

for a := 0 to ComponentCount-1 do
cmbComponent.Items.Add(Components[a].Name);

ValidateAll;

// Are there items in the items managed list?
if lbItemsManaged.Items.Count > 0 then

begin
// Select the first one.
lbItemsManaged.ItemIndex := 0;

// Simulate a click on it to populate other controls.
lbItemsManagedClick(lbItemsManaged);

end;
end;

Figure 10: The FormShow method.
The location of these keys comes, of course, from the sub-
key field data we provided to ObjMgr. Now comes the
cool part: Run the program again. See what happened?
Because the registry key existed along with all the values
we provided to ObjMgr, each of the controls has been
restored to how it was when the form last closed. This is
because we told ObjMgr to load its values in the form’s
FormCreate method.

Keep in mind that all we needed to do to accomplish this
was to add an ObjMgr component to the form, use its
property editor to provide some basic information of prop-
erties to manage, then add two lines of code (one each in
the FormCreate and FormDestroy methods). We used stock
controls from Delphi’s Component palette and turned
them into persistent objects. Not bad! Furthermore, if you
were to expand on the form to hold a few more controls,
and you wanted to save property values from those con-
trols, you only need to access ObjMgr’s property editor and
add those items!
How It Works
Now that we’ve seen ObjMgr at work, let’s check under the
hood to see how it works. I won’t be covering every aspect
of ObjMgr, but rather hitting the highlights. But fear not!
If you want to use ObjMgr yourself, the complete source
code is available on (see the end of this article for details).

The key piece of ObjMgr is of course the property editor that
you see when you double-click on the component (again, see
Figure 2). The whole purpose of this property editor is to
manage the contents of a single TStrings object. This string list
holds the essential bits of information necessary for ObjMgr
to save and restore properties from the registry. Although this
list is internal to the component and you never see it directly,
a brief discussion of its structure would be beneficial.

Each item in this string list holds information for a single
property being managed. The string is a collection of smaller
strings separated by semicolons. Each string list contains the
following items:

Component Name
Property Name
Registry SubKey
Key Name
Default Value
Valid Flag

In our previous discussion, therefore, the first item we
entered into ObjMgr would be stored internally like this:

edtName;Text;Software\Informant\ObjMgrDemo\UserData;UserName;;1

First, there is the component name (edtName) then a semi-
colon, followed by the property name (Text), another semi-
colon, and so on. Towards the end, you see two semicolons
together. This is where the default is stored, and we didn’t pro-
vide one for edtName. Last, there is a 1, which is a flag to tell
ObjMgr whether the item is valid. If the item is valid, it’s
9 October 1997 Delphi Informant
included when saving or restoring from the registry. If it isn’t
valid, it’s skipped.
Run-Time Type Information
With that piece of architectural design behind us, let’s move
on. When the ObjMgr is activated, how does it get the list of
components from the form? Well, as it turns out, the creators
of Delphi knew that component developers would want this
feature. These capabilities are all collected under one main
concept, namely what Borland calls RTTI (run-time type
information). This is a mechanism in the internal structure of
Delphi that allows you to interrogate any component at run
time to determine its name, properties, methods, etc. RTTI is
essential for the design-time pieces of Delphi to function, and
ObjMgr relies heavily on RTTI to work its magic. If you want
to learn more about RTTI, look through the Delphi units
Typinfo.pas and Dsgnintf.pas. Both of these files are reason-
ably well documented, and many of the procedures men-
tioned therein are also referenced in the Delphi Help system.

So to get the list of components on the form, we need to talk to
RTTI. We first do this in the FormShow method of the property
editors form (see Figure 10). The first step is to add the name of
the form itself to the Component combo box. This will allow us
to access the form’s properties. Next, we need a list of all the
components on the form. This is done by means of a reference
to the Form Designer, which is defined in Delphi’s Dsgnintf.pas
unit. Basically, this is a way a property editor can obtain a con-
nection to the form that is in use. In our case, we use this refer-
ence to get access to the form’s Components array. We simply
loop through all the elements of this array and add each compo-
nent name to the Component combo box.

Once a component is selected from this list, we need to get a
list of its properties to populate the Property combo box. After
a user has chosen a component (actually on its OnChange
event), we call the UpdatePropertiesCombo method. The first
line of code in this method extracts the selected item from the
Items Managed list box (as the compound strings we were talk-
ing about earlier). I then use a short function called Parse to

procedure TObjMgrDialog.lbItemsManagedClick(

Sender: TObject);

begin
UpdateComponentsCombo;

UpdatePropertiesCombo;

UpdateSubKeyCombo;

UpdateKeyNameEditBox;

UpdateDefaultsEditBox;

end;

Figure 11: Calling the Update methods when a new item is clicked.

On the Cover
extract the individual piece we’re looking for — the name of
the component, in this case. Referring to the Form Designer
again, we obtain a reference to the component (which can be
either a component on the form or the form itself).

Next, we use the GetPropList function in Delphi’s Typinfo.pas
unit. This function returns all properties matching a certain cri-
teria in its class or its ancestors. That criteria is a set of the sup-
ported property types ObjMgr can handle (specifically, tkInteger,
tkChar, tkString, and tkLString). If you call this function and
provide a nil as the last argument, the function simply returns
the number of properties for the component. After we have this
count, we allocate a chunk of memory of the appropriate size
and then call the function again — this time including a point-
er to that block of memory. Then it’s just a matter of scanning
through this block of data (records of type TPropInfo) and
extracting the name of each property we encounter. After that,
we make sure that we free the memory block; the whole section
is wrapped in a try..finally construct to make sure this happens.

Briefly then, whenever a user clicks on an item in the Items

Managed list box to the left, ObjMgr needs to fill each control on
the right with the appropriate data (if available). Obviously, if
you’re adding a new item to the list, some of the controls will
have no data to display. But after you’ve entered a few items, you
will be able to scroll up and down the list and all the controls on
the right would be automatically updated. The effect is much like
that of data-aware controls. In the preceding paragraphs, I dis-
cussed how UpdatePropertiesCombo works, but there is actually a
similar Update method for each of the controls on the form. This
is shown in Figure 11.

One additional routine I wanted to comment on is
NewRegSubKeyCheck. This method is called whenever the user
hits J in, or exits from, the Registry Sub-Key field in the
property editor. We want the drop-down list to show all the
subkeys entered so far. This routine looks at any entry into the
drop-down combo box and checks to see if it already exists in
the list. If it does, that item is selected. If it doesn’t, the new
string is added to the list. This is a good general purpose rou-
tine for this kind of drop-down combo box management.
The Units
The code for ObjMgr is split up into two units: Objmgr.pas
and Objmgr2.pas. The first unit houses all the behavior of the
property editor as a whole, i.e. the way the controls work, the
way it allows you to add and delete items managed, and so on.
The second unit, Objmgr2.pas, contains the internal string list
of managed properties as well as the registry-support code.
10 October 1997 Delphi Informant
When you install ObjMgr into the Delphi Component Library,
you’re adding Objmgr.pas, which references Objmgr2.pas.

At run time, however, the only file that needs to be included in a
project is Objmgr2.pas. Because that is where the internal string
list and registry code are, Delphi knows that it doesn’t need to
link in all of the design-time material into your run-time exe-
cutable. If you looked at the compiled DCU files for each of
these units, you would see that Objmgr.dcu is about 17KB and
Objmgr2.dcu is only 6KB. Because the design-time and run-
time material has been segregated in this way, we save the 17KB
of Objmgr.dcu that doesn’t link into the final executable.
The Run-Time Implementation
This brings us to the run-time piece of the code, Objmgr2.pas
(shown in its entirety in Listing One beginning on page 12).
The unit is straightforward. First, there is the definition of
TObjMgr, which descends from TComponent. There is a single
private variable, FItems, which is the internal string of items
that ObjMgr is managing. Then there are the Load and Save
methods that do the actual reading and writing of registry data.

Let’s take a look at the Save method (the Load method is
essentially the same). The first step is to create an instance
of a TRegistry object, and set its RootKey property to
HKEY_CURRENTUSER. ObjMgr would of course be more flex-
ible if this could be changed by means of a property, but
for the sake of simplicity, I have hard-coded it here. After
setting up the registry object instance, we now need to loop
through all the items managed. We first verify that the
object is valid by checking the 1 or 0 at the end of each
item string. If the item isn’t valid, it’s ignored.

Assuming the item is valid, we next extract each piece of the
item (component name, property name, registry key, etc.).
We obtain a reference to either the form or a component on
the form, and once we have that component reference, we
pass it into the GetPropInfo function (in Delphi’s Typinfo.pas
unit). GetPropInfo returns a pointer to a TPropInfo structure.
That structure holds all the basic information necessary to
gain access to the property and its stored value.

Now we need to write the data out to the registry. We first
close any key that might be open and then open the newly
specified key. The second parameter of the OpenKey method
is set to True, which tells the TRegistry object to create the
key if it doesn’t exist. Now we simply write out the key with
TRegistry’s WriteString method. We give it the key name the
user provided and a string value to write out. That string
value is actually the return result of a function in this unit
called GetPropAsString. Its purpose is to return the current
value of the specified property as a string value. It is that
value that is written to the registry.

So let’s look at GetPropAsString. When we called it, we
passed in a reference to the component we are working
with, along with the PropInfo record of the specific property
we are interested in. We first examine the Kind property of
PropInfo to see if this property is an integer, char, or string.

On the Cover
If it is a string, we simply use GetStrProp (also defined in
Delphi’s Typinfo unit) to return the current value of that
string property. If it is of Char type, we use GetOrdProp and
convert the ordinal value that comes back into a Char value.
If it is an Integer property, we want to do a little more than
simply return a number. In the event that a user wants to
save off a Color or Cursor property, it wouldn’t be very
handy to require the user to lookup that the color clFuchsia
is the number 16711935. Instead, we use some handy func-
tions provided with Delphi that will convert a numeric
value to and from either a Color or Cursor. Then it is simply
a matter of determining if we are looking at a TColor or
TCursor and calling the appropriate conversion routine
(ColorToIdent or CursorToIdent — both defined in
Graphics.pas). Because we add this extra step, we now will
have a registry entry that says that the Color key is clFuchsia
instead of the meaningless value 16711935. Also, we can
use the same technique when asking the user for a default
value for such a property. In the Default Value edit box in
the property editor, we can enter clYellow and the proper-
ty editor will make the appropriate conversion.
Some Additional Features
There are some additional features of ObjMgr that I am
going to mention briefly here. As you can see, the property
editor form is resizable. I trapped the WMGetMinMaxInfo
message that Windows processes to tell it the minimum
size the form can be. Also, on the form’s Resize method, I
put in code that stretches the controls so that they take
advantage of additional form space. This is particularly use-
ful to view long registry key names.

I also added a component editor to ObjMgr to add the capa-
bility of double-clicking on the component to get its property
editor up. It also adds a Edit Managed Properties menu item
on the right-click popup menu for the ObjMgr component.

The Items Managed list box is also different in that it is an
owner-draw list box. I wanted to indicate whether a particu-
lar item was valid or not, so I added a bitmap resource to the
project that shows either a green check or a red “X” drawn to
the left of each item to indicate its validity.
IniOut and Where to Go from Here
As I mentioned before, ObjMgr is based on principles used
in my IniOut utility (yes, I hate the name too, but I am
stuck with it now). ObjMgr was created to show how you
can apply these principles of object persistence in your
applications. However, it clearly falls short in many areas.
For one thing, it only supports three property types, i.e.
integer, string, and char. These are the easiest to implement
and I chose them strictly to limit the focus of this article.

ObjMgr can be extended to add other property types with
varying degrees of effort. Floating-point numbers would
probably be the next easiest to implement. After that
would come set types, which would be a little more diffi-
cult because you will need to manage the individual ele-
ments of the set and convert them to and from a string.
11 October 1997 Delphi Informant
Getting even more difficult would be enumerated types,
which would allow you to manage something like a com-
ponent’s Align property. When you chose the Align proper-
ty, the Default Value edit box could become a drop-down
list populated with all the valid elements of that enumerat-
ed type; in this instance it would hold alBottom, alClient,
alLeft, alNone, alRight, and alTop. You would also need to
convert these to and from textual representations (e.g.
alClient as a string) into its actual type (alClient as an item
of the type TAlign).

IniOut takes those extra steps to be a far more comprehen-
sive solution. It manages virtually any property type
(including floating-point properties, sets, enumerated types,
classes, methods, and compound properties types such as
Fonts, StringLists, and so on. It also allows you to add non-
published properties, so you can add variables at run time
to its list of managed properties.

As a special offer to readers, I have decided to provide a free
copy of the registered version of IniOut to any Delphi
Informant subscriber. The shareware version has a few limita-
tions, but the registered version is completely functional and
includes compiled units for all versions of Delphi. The regis-
tered version doesn’t include the source to IniOut, but it is
available for a modest fee. For those of you who have previ-
ously paid for a registered copy of IniOut, don’t fret! The
money you paid for the registered version will be applied
toward the cost of the source code version if you wish to get
the IniOut source.

To get your free registered copy of IniOut, simply send me an
e-mail at RobertV@csi.com. Include in your e-mail the num-
ber directly to the left of your subscription expiration date.
The number should look something like “C 12345.” I will
send you the registered version of IniOut by return e-mail.
Conclusion
With the Persistent Object Manager, making a Delphi object
or application persistent is as easy as dropping a component
on a form. Saving persistent data helps users of your applica-
tions be more productive and eliminates annoying repetitive
chores or input of data.

In the past, making objects persistent might have been a
chore that you as an application developer would rather not
deal with. Now you have no excuse!

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\OCT\DI9710RV.

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer con-
sultant, and has experience in a number of programming languages. He can be
reached via e-mail at RobertV@csi.com.

On the Cover
Begin Listing One — Objmgr2.pas
unit OBJMGR2;

interface

uses
WinProcs, WinTypes, Messages, SysUtils, Classes,

Graphics, Controls, Forms, Dialogs, StdCtrls, Buttons,

TypInfo, DsgnIntF, Registry;

const
// These are the supported property types.
tkProps = [tkInteger,tkChar,tkString,tkLString];

ppComponent = 0;

ppProperty = 1;

ppSubKey = 2;

ppName = 3;

ppDefault = 4;

ppValid = 5;

type
TObjMgr = class(TComponent)
private

FItems : TStrings;

procedure SetItems(Value: TStrings);

protected
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure Load;

procedure Save;

published
property Items: TStrings read FItems write SetItems;

end;

function Parse(TmpS: string;
A: Integer; C: Char): string;

implementation

function Parse(TmpS: string; A: Integer; C: Char): string;
var
SCNum,X : Integer;

begin
Result := '';

SCNum := 0;

for X := 1 to Length(TmpS) do
if TmpS[X] = C then

Inc(SCNum)

else
if SCNum = A then

Result := Result + TmpS[X];

Result := Trim(Result);

end;

function IsValid(a: string): Boolean;
begin
Result := (Parse(a,ppComponent,';')<>'');

if not Result then
Result := (Parse(a,ppProperty,';')<>'');

if not Result then
Result := (Parse(a,ppSubKey,';')<>'');

if not Result then
Result := (Parse(a,ppName,';')<>'');

end;

function GetPropAsString(Obj: TObject;

Info: PPropInfo): string;
var
IntVal : LongInt;

begin
Result := '';

with Info^ do
case PropType^.Kind of

tkInteger :

begin
12 October 1997 Delphi Informant
// Get the integer value.
IntVal := LongInt(GetOrdProp(Obj,Info));

// If TColor or TCursor, convert to text.
if (PropType^.Name = 'TColor') and

ColorToIdent(IntVal,Result) then
else if (PropType^.Name = 'TCursor') and

CursorToIdent(IntVal,Result) then
else

Result := IntToStr(IntVal);

end;
tkChar : Result := Chr(GetOrdProp(Obj,Info));

tkString,

tkLString : Result := GetStrProp(Obj,Info);

end;
end;

procedure SetPropFromString(Obj: TObject; Info: PPropInfo;

Str: string);
var
IntVal : LongInt;

CharVal : Char;

begin
try with Info^ do
case PropType^.Kind of

tkInteger :

if Str<>'' then
if PropType^.Name = 'TColor' then

if IdentToColor(Str,IntVal) then
SetOrdProp(Obj,Info,IntVal)

else
SetOrdProp(Obj,Info,StrToInt(Str))

else
if PropType^.Name = 'TCursor' then
if IdentToCursor(Str,IntVal) then

SetOrdProp(Obj,Info,IntVal)

else
SetOrdProp(Obj,Info,StrToInt(Str))

else
SetOrdProp(Obj,Info,StrToInt(Str));

tkChar :

begin
CharVal := Str[1];

SetOrdProp(Obj,Info,Ord(CharVal));

end;
tkString,

tkLString : SetStrProp(Obj,Info,Str);

end;
except

// This catches invalid property assignments.
end;

end;

{ TObjMgr - Persistent Object Manager }
constructor TObjMgr.Create(AOwner: TComponent);

begin
inherited Create(AOwner);

FItems := TStringList.Create;

TStringList(FItems).OnChange := nil;
end;

destructor TObjMgr.Destroy;

begin
FItems.Free;

inherited Destroy;

end;

procedure TObjMgr.SetItems(Value: TStrings);

begin
FItems.Assign(Value);

end;

procedure TObjMgr.Load;

var
Reg : TRegistry;

A : Integer;

TmpCmp : TComponent;

PropInfo : PPropInfo;

On the Cover
S1 : string;
CmpName : string;
PrpName : string;
SubKey : string;
KeyName : string;
DefVal : string;

begin
Reg := TRegistry.Create;

try
Reg.RootKey := HKEY_CURRENT_USER;

// Loop through all items managed.
for A := 0 to Items.Count-1 do begin

S1 := Items[A];

// Verify item is valid.
if not IsValid(S1) then Continue;

// Extract the individual elements from the item.
CmpName := Parse(S1,ppComponent,';');

PrpName := Parse(S1,ppProperty,';');

SubKey := Parse(S1,ppSubKey,';');

KeyName := Parse(S1,ppName,';');

DefVal := Parse(S1,ppDefault,';');

// Check to see if this is a form.
if CmpName = (Owner as TForm).Name then
// Yes - use the form.
TmpCmp := (Owner as TForm)

else
// Find the component on the form.
TmpCmp := (Owner as TForm).FindComponent(CmpName);

// Couldn't find component - go on to next.
if TmpCmp = nil then Continue;

// Get the info record on this component.
PropInfo := GetPropInfo(TmpCmp.ClassInfo,PrpName);

if PropInfo = nil then Continue;

try
Reg.CloseKey;

// Open the Subkey.
if Reg.OpenKey(SubKey,False) then

// Does this key name exist?
if Reg.ValueExists(KeyName) then
// Yes - set the property.
SetPropFromString(TmpCmp,PropInfo,

Reg.ReadString(KeyName))

else
// No it doesn't exist - use the default.
SetPropFromString(TmpCmp,PropInfo,DefVal)

else
// Couldn't open the key - use the default.
SetPropFromString(TmpCmp,PropInfo,DefVal);

except
end;

end;
finally
Reg.Free;

end;
end;

procedure TObjMgr.Save;

var
Reg : TRegistry;

A : Integer;

TmpCmp : TComponent;

PropInfo : PPropInfo;

S1 : string;
CmpName : string;
PrpName : string;
SubKey : string;
KeyName : string;

begin
Reg := TRegistry.Create;

try
Reg.RootKey := HKEY_CURRENT_USER;

// Loop through all items managed.
for A := 0 to Items.Count-1 do begin
S1 := Items[A];

// Verify item is valid.
if not IsValid(S1) then Continue;

// Extract the individual elements from the item.
13 October 1997 Delphi Informant
CmpName := Parse(S1,ppComponent,';');

PrpName := Parse(S1,ppProperty,';');

SubKey := Parse(S1,ppSubKey,';');

KeyName := Parse(S1,ppName,';');

// Check to see if this is a form.
if CmpName = (Owner as TForm).Name then

// Yes - use the form.
TmpCmp := (Owner as TForm)

else
// Find the component on the form.
TmpCmp := (Owner as TForm).FindComponent(CmpName);

// Couldn't find component - go on to next.
if TmpCmp = nil then Continue;

// Get the info record on this component.
PropInfo := GetPropInfo(TmpCmp.ClassInfo,PrpName);

if PropInfo = nil then Continue;

try
Reg.CloseKey;

if Reg.OpenKey(Subkey,True) then
Reg.WriteString(

KeyName,GetPropAsString(TmpCmp,PropInfo));

except
end;

end;
finally
Reg.Free;

end;
end;

end.

End Listing One

14 October 1997 Delphi Informant

Down to the Metal
High-Performance Computing with Delphi

Informant Spotlight
Delphi 2 / Delphi 3

By Jay Cole
Delphi generates incredible code. It can pass procedure parameters in
registers instead of setting up a stack frame; it uses pointer arithmetic

instead of array index calculations when it can. All in all, the code Delphi
generates is at least on a par with any C/C++ compiler out there.
Are you tired of C/C++ programmers claiming
you can’t do low-level programming efficiently
in Delphi? They maintain that only languages
such as C/C++ are suited for low-level tasks,
and that Delphi is great for user-interface pro-
gramming and prototyping, but for time-
critical, “serious” applications, only C/C++ or
assembler will do. Well, you can out-perform
even the craftiest C/C++ programmer — if
you are willing to break a few rules.

So what can you do when you need even
more performance? Obviously, first visit the
algorithm used to solve the problem. A well
designed algorithm can create orders-of-
magnitude improvements in performance;
the classic example is a bubble sort versus a
quick sort. That is exactly what we at OpNek
did with NitroSort: We invented a new sort-
ing algorithm that was several times faster
than the traditional quick sort. But that
wasn’t enough. We couldn’t get the perfor-
mance numbers we wanted without breaking
some of the cardinal rules of computer sci-
ence, and generating some very tight code.
(Note: The material in this article applies only
to Delphi 2/3 running on Windows 95/NT.)
Creating a Dynamic Compiler
Remember back in college when your profes-
sor said, “Don’t ever, ever, ever write self-
modifying code?” Well, this article puts a bit
of a twist on that. It doesn’t actually modify
existing code, but it does generate entirely
new code, in memory, on-the-fly, based on a
small, embedded language specific to the
problem being addressed. The technique is
simple: Allow users to specify what they want
to accomplish through a small language
geared to the problem at hand.

In NitroSort, this is a sorting language that
allows the user to specify the file type, record
size, and sort keys, among other things. Then
the system allocates a block of executable
memory, and compiles the machine code
directly into the allocated memory block.
Finally, a standard function pointer in
Delphi is assigned to the allocated memory
block, and is called as a function pointer.
Essentially, this is what Borland did with
Turbo Pascal 3.0 when it compiled and ran
within the DOS environment.

Sound difficult? After all, who knows
machine code? Who knows how to write a
compiler? How does one debug and test the
code? Actually, it looks more difficult than it
is. Surprisingly, all this is fairly easy for most
embedded-language applications. With tools
such as Visual Parse++ for the parsing and
Turbo Debugger for generating the machine
code and debugging compiler output, the
process is quick and straightforward. (This
article’s references to the Turbo Debugger
refer specifically to the Turbo Debugger for
Win32. It allows assembling and disassem-
bling of 32-bit instruction codes. Generally,

Informant Spotlight
the more complex and general a language becomes, the more
difficult the compilation and debugging becomes.)
An Old, Trusty Example
This article assumes a basic knowledge of compiler theory
and assembly language. For more information, read
Compilers: Principles, Techniques and Tools by Alfred V.
Aho, Ravi Sethi, and Jeffrey D. Ullman [Addison-Wesley,
1985]. It’s the “Dragon Book” — the bible of compiler
theory. For 386 assembler, almost any introductory text
will do. Peter Norton puts out a pretty good book on Intel
Assembler; for a full treatment, read Assembly Language
Programming for the Intel 80XXX Family by William B.
Giles [Prentice Hall, 1991].

To illustrate the technique without getting bogged down in
the details, we’ll create a simple version of a classic computer-
science homework assignment, “The Formula Compiler.”
Our Formula Compiler
Our example will be very limited; it will do calculations only
on the IEEE floating-point data type (the Delphi Double),
and handle only addition, subtraction, multiplication, and
division. The compiler will be a simple, recursive-descent
parser, with an emphasis on code generation, not parsing.
The techniques presented here, however, can be generalized
for powerful languages. Of course, the compiler will handle
the expressions in correct mathematical precedence.

Two key elements. Users must be able to specify the formula
via an edit box or some other mechanism at run time. They
also need access to internally-held variables in the compiled
program with which they are interacting. For example, when
creating a graphing function for an X-Y coordinate system,
users would need access to the X and Y variables the program
will be plotting, in order to enter their formulas. They also
need a place to enter the formula to be compiled and used by
the graphing function. If users are allowed to enter formulas
that act on internal fields and variables, they would need
access to the names of those variables. Essentially, the user-
defined, run-time formula must interact with the static, compile-
time variables. A symbol table manager handles this.
Figure 1: Turbo Debugger.
Who Writes Machine Code, Anyway?
Take a look at the Turbo Assembler quick reference guide, or
any x86 assembler reference. In it are cryptic entries such as:

OpCode Instruction Clocks Description

$81 /0 id ADD r/m32, imm32

The OpCode on the left is the machine code that represents the
instruction (in the Instruction column). If the computer’s instruc-
tion pointer were currently pointing at a memory location con-
taining $81, and it was to execute, the CPU would know to per-
form an ADD instruction, and the remaining bytes immediately
after the $81 would tell it what and how to add. To perform this
operation, generate a $81 hex followed by the mod r/m and the
immediate value as a 4-byte integer. The mod r/m is an indicator
to tell whether the operation is to memory, or to a register, and
15 October 1997 Delphi Informant
what memory location or what register. It’s not difficult to gener-
ate the machine code by hand, but it’s tedious.

Fortunately, there’s an easier way. I don’t think in, or
write, machine code, so I cheat. Turbo Debugger has a
built-in facility that makes this step easy. Load the Turbo
Debugger, select File | Open, then open any executable
program (even if it wasn’t created in Delphi). If the pro-
gram wasn’t compiled with Turbo Debugger information,
the message “Program has no symbol table” will be dis-
played. Click on the OK button if that message box
appears. If the selected program has Turbo Debugger
information embedded, the debugger will show source
code instead of CPU instructions. In that case, select View

| CPU to switch from source-level to CPU-level debug-
ging. A screen similar to Figure 1 will appear immediately
after opening the file and viewing the CPU window.

Now, to see how the assembly statement would be represent-
ed in machine code, enter it into the debugger:

ADD EDX, 200

By pressing A, an input box is displayed with the character
“A” already in it. Enter the rest of the ADD statement as
shown in Figure 2. After pressing J, the assembly state-
ment is transformed into machine code.

The first column in the CPU window is the instruction
pointer for the machine, i.e. the location of the add instruc-
tion in memory (:00410000). The next column contains the
machine code bytes equivalent to ADD EDX, 00000200.
The final column is the assembler statement itself. So, in our
example, we have:

:00410000 81C200020000 add edx, 00000200

The $81 byte is the add instruction we saw earlier in the
Turbo Assembler reference. The $C2 byte indicates the
EDX register, and $00200000 is the 32-bit value represent-

fCodeBuff :=

VirtualAlloc(nil, codeSize, MEM_COMMIT + MEM_RESERVE,
PAGE_EXECUTE_READWRITE);

Figure 3: Virtual allocation of a code page.

Figure 2: The instruction entry screen.

Informant Spotlight

Figure 4: The Project Options dialog box for our test program.
ing the hex number 200. (Remember, on the Intel plat-
form, words are stored backwards.)

How Do We Allocate the Code Space?
Now that there is an easy method to quickly access the
machine code for any assembly statement, we need an exe-
cutable memory block to hold the code to be generated.
In Windows 95, you can allocate a block of memory using
GetMem, assign a function pointer to it, and call the func-
tion directly. That’s nice, but not very safe. Fortunately,
Windows NT is a bit more protective. If you tried the
Windows 95 approach, a protection violation would be
issued under NT. In NT, a memory block must be allocat-
ed with the VirtualAlloc function, which contains more
details as to the memory’s exact use. The code in the arti-
cle will work in both Windows 95 and NT, and is the
safest code for performing this type of technique. In NT,
it’s necessary to declare the memory as executable, as well
as readable and writeable.

VirtualAlloc specifies the size of the memory space to
allocate, as well as the attributes of the memory block.

In Figure 3, the memory block is allocated as an exe-
cutable, readable, and writeable block of memory.
PAGE_EXECUTE_READWRITE is a flag to indicate to
Windows NT not only to read and write to this memory
location, but later to actually allow executing it as code. It
returns a pointer to an executable memory block of size
codeSize. This pointer to memory can be used just as any
other pointer variable would be used.
Generating Good Code
So far, this article has demonstrated translating assembly
instructions to machine code, and how to allocate an exe-
cutable block of memory. The only thing left is to generate
code for the application. Ideally, the run-time formulas
should execute as fast as if they had been compiled directly
into Delphi. But, instead of being compiled statically, they
will be dynamic and user-defined well after compilation.
16 October 1997 Delphi Informant
By examining how Delphi generates a formula, we can size
up the machine code involved. If the code Delphi generated
isn’t efficient, a better algorithm or method can be substi-
tuted and typed into the debugger (as shown in Figure 2).
For this example, a small console application is created,
containing all the operators to be implemented: addition,
multiplication, subtraction, and division. The application is
compiled with Turbo Debugger information embedded, and
pulled into Turbo Debugger for examination. By doing this,
the source code and the associated assembly language gener-
ated by Delphi are viewed together. The project options are
shown in Figure 4.

I knew Delphi would do some optimizations over and
above what I would handle in this simple example. So, I
put some floating-point assembly-language code inside an
asm block I knew I would need in the code generation
process. By doing this, I can translate the other needed
instructions at the same time, instead of typing them in
separately. Don’t execute this code! It would most likely
result in a nasty crash. Now, with a basic understanding of
how Delphi generates the code, an efficient formula parser
can be implemented.

Before proceeding, make sure the compiler tab has all three
Debugging options checked. With the sample code in
Figure 5, the machine code needed to implement the next
part of our formula parser is displayed. First, compile this
program; go into Turbo Debugger and select File | Load for
the executable. Then select View | CPU and begin stepping
through the code until the call to Eval in Figure 5. At this
point, use 7 to step into the function. A display similar
to Figure 6 will appear.

17 October 1997 Delphi Informant

program ConsoleApp;

uses
Forms;

{$R *.RES}

var
a,b,c,d, tmpResult : Double;

function Eval : Double;

begin
b := a * b + c * d;

asm
FMULP ST(1), ST

FDIVP ST(1), ST

FADDP ST(1), ST

FSUBP ST(1), ST

end;
Result := a + b;

end;

begin
b := 12.445;

c := 13.345;

d := 445014.112;

tmpResult := Eval;

WriteLn(tmpResult);

end.

Figure 5: The sample code.

Informant Spotlight

Figure 6: Mixed view of source and generated code.
Here, Delphi
generates some
pretty simple
code. It loads
the EAX register
with the address
of the variable
A. It uses a com-
bination of
FLD, FSTP,
FADD, FDIV,
FMUL, and
FSUB. These
operators load
values on the
floating-point
stack from a
memory point-
er, pop the val-
ues off the stack
to a memory
address, and
perform binary
arithmetic oper-
ations on the
floating-point stack. Most assembly language texts will give a
complete treatment of these floating-point operators. Now all
the information is present to generate a user-defined function in
machine code.

Each function in Delphi has function entry and exit code. All
the entry and exit code information can simply be copied direct-
ly to the formula compiler. All Delphi functions must adhere to
this standard calling methodology as long as they are not stdcall
type functions. Delphi subtracts eight from the stack pointer,
and loads the EAX register with the address of A upon entry into
this function. It then performs several floating-point stack opera-
tions, and finally, moves the result to the ESP stack, as well as
pushing the result on to the floating-point stack, the code after:

Result := a+b

With the value on the floating-point stack, the function result
could easily be used in an expression instead of just an assign-
ment. Finally, it pops off two four-byte integers, so the stack
frame is returned to the original setting before calling. The
user-defined procedure generated in the formula compiler will
need to mimic the entry and exit code of the function, and,
based on the user formula, generate machine code similar to
that in Figure 6, between the entry and exit code.

Take one of the instructions as an example of how to use the
machine code:

DD0560164200 fld qword ptr [00421660]

The first two bytes are the FLD (Load Real) instruction
($DD followed by $05). The remaining bytes are the address
of the Double variable push onto the floating-point stack. To
create this instruction in memory, write out the first two
bytes for the instruction, then the address of the variable to
push. When the machine’s instruction pointer (IP) comes to
that instruction ($DD,$05), it will push the value contained
at that memory location to the floating-point stack, just as if
Delphi had generated it.

So, all the building blocks necessary to generate user-
defined code are now in place. The only thing that
remains is the formula parser and code generator. The for-
mula compiler’s code model will push the left side, then
the right side of each expression to the floating-point
stack. It will perform the arithmetic operation on the top
two stack elements and push that result back to the floating-
point stack. For example, in the expression x + y, the value
for x, then the value for y, would be pushed onto the
stack. The + operation would be performed on the values
for x and y, and the resulting value would be pushed back
to the floating-point stack. This is a traditional post-fix
stack execution model. It’s not always the most effective
code, but because the floating-point processor on a
Pentium takes one or three clock cycles to perform these
instructions, the code will be quick. Optimization is out-
side the scope of this article, so it’s just brute force for
now. Even this brute-force method, however, would out-
perform the cleverest interpreted scheme.
The Code Generator
Code generation is the simplest of the two remaining sections.
Machine code must be output and space reserved for the user
constants and variables. The symbol table is key to sharing
compile-time variables with the user’s run-time formula.

The symbol table entries are basic. Pass in the name and address
of the compile-time variable. Those variables are then ready to
be processed against a user-entered formula. The compiler has
memory-address knowledge, through the symbol table, of the
variables inside the compiled program, and therefore can access
and set the values in those variables. Figure 7 shows the class

TCodeGenerator = class(TObject)
fCodeBuff, fCodeBuffEnd,

fDataBuffPtr, fCurrCodeBuffOfs : Pointer;

fCodeBuffSize : Integer;

public
constructor Create(const codeBuffSize : Integer);

destructor Destroy; override;

function GenBytes(

const bytes : array of Byte) : Boolean;

function GenWords(

const words : array of Word) : Boolean;

function GenQuads(

const quads : array of Cardinal) : Boolean;

function AllocDataSpace(numBytes : Longint) : Pointer;

function GetFunctionAddress : Pointer;

end;

Figure 7: The code generator interface.

Informant Spotlight
definition of the code generator. Basically, the constructor
reports the combined size of the code and data space. In parsing
the formula, the compiler will begin to generate bytes, words,
and quad-words to the code space, and sub-allocate data space
from the block of memory allocated for the machine code. By
calling the Gen... functions, the machine code is generated as
the expression is parsed. When done with this step, only the
exit code and return must be generated before the code is ready
to execute as a standard Delphi function.

The AllocDataSpace function allocates a block of numBytes size
from the end of the code buffer. The code is generated from the
beginning of the block to the end. The data is allocated from
the end of the block to the beginning. As long as these two
pointers don’t overlap, there is enough space to generate code
and data. If the program runs out of space, the Gen... functions
return False. Of course, it would be nice to have some simple
error recovery functions. It’s not difficult, but it’s left as a prob-
lem for the reader. The Create constructor uses the VirtualAlloc
function, described previously, to allocate an executable memo-
ry block. Finally, calls to GetFunctionAddress get the pointer to
the memory block containing the generated machine code, so a
function pointer can be assigned to the newly generated code,
and subsequently be called and executed. The implementation
code is shown in Listing Two, beginning on page 20.
The Parser and Scanner
A parser and scanner could be written from scratch, but it turns
out the Dragon Book provides an adequate parser and scanner.
The only remaining task is to integrate the code generation and
the data-space allocation. The parser takes the in-fix formula,
parses it, then produces post-fix code. Post-fix code pushes both
operands to a stack, then generates the binary operator to act on
the stack elements. In other words, the operator is evaluated
after (post) the operands. Except for a few changes to make the
parser/lexer more efficient and “Delphi-izing” the code, most of
the original Dragon Book code for parsing and lexing is
retained. Instead of outputting a character as in the Dragon
Book, the equivalent machine code is generated.

Due to space limitations, the lexer is greatly simplified. In reality,
a tool like Lex, Yacc, or Visual Parse++ would be used to put
18 October 1997 Delphi Informant
together a real grammar, parser, and lexical analyzer. But, for this
example, a quick and dirty, recursive-descent parser is best for
illustration. Note the glaring omission of almost all error-check-
ing and recovery code. This is also left as a problem for the read-
er, as there is not sufficient space to include it. Full source code
for this article is available (see end of article for details).

It’s best to explain this overall process through an example.
Take the expression A+B. The parser would push the value in
A, then the value for B to the floating-point stack. The + oper-
ator generates an FADDP ST(1), ST that takes the top two
values off the floating-point stack, adds them, then pushes the
resultant value back to the floating-point stack for the next
operation. The entry and exit code for the function is the same
as the code generated by Delphi. The actual code generated for
the mathematical operators is quite small. In fact, most of the
code is spent in the mundane task of lexing the input stream
into recognizable tokens. This grammar is rudimentary; it
doesn’t handle the negate operator or the power operator, let
alone mathematical functions such as Sine, Cosine, etc., but
this article is not about how to write grammars.
Running the Formula
To execute the code, a function pointer is needed to assign to
the memory. This particular function pointer must point to a
function that returns a Double:

type
TDoubleFunction = function : Double;

var
funcPtr : TDoubleFunction;

tmpDouble : Double;

Now that the types are declared, all that remains is assign-
ment and execution. To assign the function pointer, cast the
pointer returned by the GetFunctionPointer method to type
TDoubleFunction:

FuncPtr := TFunctionType(codeGenObj.GetFunctionPointer);

And execute the function:

tmpDouble := FuncPtr;

Now if the run-time formula will have access to internal
variables, it must use the previous symbol table functions
to set them (before the compilation process). A symbol
table consists of each variable name and its address. Right
after the parser is created, but before the user’s formula is
compiled and executed, add the internal variables and their
respective addresses to the symbol table:

aParser := TParser.Create;

aParser.AddSymbol('X', @x);

aParser.AddSymbol('Y', @y);

if aParser.ParseFormula('x+y * 2');

...

Because this example uses the variables x and y, and uses the
address of the variables (not the values), the values don’t need

Figure 8: The user input screen.

Figure 9: The generated code.

Informant Spotlight
to be initialized in any other way than just setting them in
the Pascal code. For example:

for x := 1 to 100 do begin
for y := 1 to 100 do begin

tmpDouble := FuncPtr;

end;
end;

Because the compiler is accessing x and y via their address in the
function routine, the assignment in the Delphi for loop is suffi-
cient to evaluate the formula versus the current values in x and y.
Reviewing the Code
Once the code is generated, take a look at it. When the
TestFormParser program is loaded into the Turbo Debugger
and run, the form in Figure 8 will be displayed. Step into the
code and see the results. First, enter:

x*x + y

into the formula input box. Next, set a breakpoint at this
statement:

tDouble := funcPtr;

This code is located in the OnClick event for the Calculate

button in the inner-most loop. By setting the breakpoint
here, the debugger will stop short of the newly generated
routine. Now, run the program by pressing the Calculate

button. The debugger will break at the line above. Select
View | CPU in Turbo Debugger and switch to mixed-mode
source and assembly. Press 7 to step into the generated
code. A screen similar to that shown in Figure 9 will appear.

First is the generated function entry code, ADD ESP,
FFFFFFF8. Next is the push of the variable X twice and a
19 October 1997 Delphi Informant
call to FMULP, followed by a push of the Y variable and a
call to FADDP. Finally, the resultant value is pushed to the
stack, and the function exit code is executed. The RET
function returns to the function call in the OnClick event.
It is now an official compiler! It has also produced some
pretty efficient code — not quite to the level of Delphi,
but close.
Where to Go from Here
Okay, now that the basic techniques have been illustrated,
how useful is this? Whenever an application needs user-
dynamic interaction and speed, this technique provides a
powerful solution. Compiled code will typically yield three
to five times the speed advantage over an interpreted version.

Dynamic compilation is a great encapsulation tool, and yields
dramatic performance and flexibility advantages to users. Its sim-
ple language interface means that application programmers don’t
need to understand any of the implementation details. Just the
simple formula compiler we have built can be embedded into
any other application that needs user-defined formulas.

As you investigate this technique, you’ll notice that you have
to handle problems such as general register allocation and
stack and temporary name handling, as well as relative jump
addressing and near/long jumps, among others. These are
not difficult topics (save register allocation), but they do take
time to implement — and are certainly beyond the scope of
a magazine article. In fact, when I do technical interviews, I
use the forward and backward jump references as an inter-
view question to see the thought processes of potential job
candidates. It is not a trivial problem, but certainly solvable
within a few days of coding.

My recommendation is to start small, with the formula parser.
Begin to add small functions as the application’s needs expand.
These compiler tools and objects will evolve out of necessity.
Soon, all the tools necessary to generate even a “full” language

Informant Spotlight
compiler such as Delphi or C/C++ will be available. It takes
some time, but small steps add up quickly. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\OCT\DI9710JC.

Jay Cole is the owner of OpNek Research, a consulting and Financial Markets firm
that consults for many Fortune 500 companies. OpNek also produces the high-
speed sort utility NitroSort. For more information on OpNek or NitroSort, visit
http://www.nitrosort.com.
2

Begin Listing Two — Code Generator Implementation
implementation

uses SysUtils, Dialogs;

const
cTokToStr : array[TTokenType] of string[50] =

('+', '-', '*', '/', 'Number', 'None', 'Error',

'Id', '(', ')', 'Done');

type
TRefObj = class(TObject)
public
fAddr : Pointer;

end;

constructor TParser.Create;

begin
// Create the symbol table and an 8KB
// code/data space for our formula.
fSymbolTable := TStringList.Create;

fCodeGen := TCodeGenerator.Create(8192);

end;

destructor TParser.Destroy;

begin
fSymbolTable.Free;

fCodeGen.Free;

end;

function TParser.LookUp(tokenStr : string;
var addrVal : Pointer) : Boolean;

var
ndx : Integer;

begin
ndx := fSymbolTable.IndexOf(tokenStr);

if (ndx >= 0) then begin
addrVal := (fSymbolTable.Objects[ndx] as TRefObj).fAddr;

Result := True;

end else begin
Result := False;

addrVal := nil;
end;

end;

procedure TParser.AddSymbol(sym : string; addr : Pointer);
var refObj : TRefObj;

begin
refObj := TRefObj.Create;

refObj.fAddr := addr;

fSymbolTable.AddObject(UpperCase(sym), refObj);

end;

procedure TParser.DeleteSymbol(sym : string);
0 October 1997 Delphi Informant
begin
fSymbolTable.Delete(

fSymbolTable.IndexOf(UpperCase(sym)));

end;

function TParser.GetChar : char;

begin
if (fCurrPos <= Length(fInputStr)) then
begin

Result := fInputStr[fCurrPos];

Inc(fCurrPos);

end
else
Result := Chr(0);

end;

procedure TParser.UnGetChar;

begin
Dec(fCurrPos);

end;
function TParser.Lexan : TTokenType;

var
t : char;

tokenStr : string;
begin
Result := ttNone;

while True do begin
t := GetChar;

t := UpCase(t);

if (t in [' ', Chr(9)]) then begin
// Skip the white space.
while (t in [' ', Chr(9)]) do
t := GetChar;

UnGetChar;

end else if (t in ['0'..'9']) then begin
// We have a number.
tokenStr := '';

while (t in ['0'..'9', '-', '.']) do
begin
tokenStr := tokenStr + t;

t := GetChar;

end;
UnGetChar;

try
Result := ttNumber;

fFloatVal := StrToFloat(tokenStr);

except
on EConvertError do Result := ttError;

end;

Break;

end else if (t in ['A'..'Z']) then begin
// We have a character, so we have an ID.
tokenStr := '';

while (t in ['A'..'Z','0'..'9']) do
begin
tokenStr := tokenStr + t;

t := GetChar;

t := UpCase(t);

end;
UnGetChar;

if (LookUp(tokenStr, fAddrVal)) then
Result := ttId

else
Result := ttError;

Break;

end else
case t of
'+' : Result := ttAdd;

'-' : Result := ttSubtract;

'/' : Result := ttDivide;

'*' : Result := ttMultiply;

'(' : Result := ttLParen;

')' : Result := ttRParen;

Informant Spotlight
Chr(0) : Result := ttDone;

else
Result := ttNone;

Break;

end;
end;

procedure TParser.SyntaxError(anErrorStr : string);
begin
fError := True;

MessageDlg(anErrorStr, mtError, [mbOk], 0);

end;

function TParser.ParseFormula(aFormula : string) :
Boolean;

begin
// Generate the entry code.
fError := False;

fInputStr := aFormula;

fCurrPos := 1;

fCodeGen.GenBytes([$83, $c4, $f8]); // ADD ESP,
$FFFFFFF8

lookAhead := Lexan;

if (lookAhead <> ttDone) then Expr;

// Generate the exit code. We must have space to store
// result, and that space is the ESP position that we
// backed up. We also need to leave the result on the
// floating-point stack.
fCodeGen.GenBytes([$dd,$1c,$24]); // FSTP QWORD PTR

[ESP]
fCodeGen.GenBytes([$9B]); // WAIT
fCodeGen.GenBytes([$dd,$04,$24]); // FLD QWORD PTR

[ESP]

// Pop off the 8 stack bytes and return.
fCodeGen.GenBytes([$59]); // POP ECX
fCodeGen.GenBytes([$5a]); // POP EDX
fCodeGen.GenBytes([$c3]); // RET

Result := not fError;

end;

procedure TParser.Expr;

begin
Term;

while (True) do begin
if (lookAhead = ttAdd) then begin

Match(ttAdd); Term;

// Generate Add code.
fCodeGen.GenBytes([$de,$c1]); // FADDP ST(1), ST

end else if (lookAhead = ttSubtract) then begin
Match(ttSubtract); Term;

// Generate Subtract Code.
fCodeGen.GenBytes([$de,$e9]); // FSUBP ST(1), ST

end else
Break;

end;
end;

procedure TParser.Term;

begin
Factor;

while (True) do begin
if (lookAhead = ttMultiply) then begin

Match(ttMultiply); Factor;

// Generate the multiply code.
fCodeGen.GenBytes([$de,$c9]); // FMULP ST(1), ST

end else if (lookAhead = ttDivide) then begin
Match(ttDivide); Factor;

// Generate the divide code.
fCodeGen.GenBytes([$de,$f9]); // FDIVP ST(1), ST

end else
Break;

end;
end;
21 October 1997 Delphi Informant
procedure TParser.Factor;

var
tmpPtr : ^double;

begin
if (lookAhead = ttLParen) then begin

Match(ttLParen); Expr;

Match(ttRParen);

end else if (lookAhead = ttNumber) then begin
// Add the number to the data space and then generate
// the load code for that number.
tmpPtr := fCodeGen.AllocDataSpace(SizeOf(fFloatVal));

tmpPtr^ := fFloatVal;

fCodeGen.GenBytes([$dd,$05]);

// FLD QWORD PTR [tmpPtr]
fCodeGen.GenQuads([Cardinal(tmpPtr)]);

Match(ttNumber);

end else if (lookAhead = ttId) then begin
// Get the ID's address. Generate the push for the
// value held in the Id address space.
fCodeGen.GenBytes([$dd,$05]);

// FLD QWORD PTR [@id]
fCodeGen.GenQuads([Cardinal(fAddrVal)]);

Match(ttId);

end else begin
// We have a syntax error. Let the user know.
SyntaxError('Unrecognized token at ' +

IntToStr(fCurrPos));

end;
end;

procedure TParser.Match(t : TTokenType);

begin
if (lookAhead = t) then
lookAhead := Lexan

else begin
// Syntax Error
SyntaxError('Expecting '+cTokToStr[t]);

end;
end;

procedure TParser.GetProcAddress(

var funcPtr : TDoubleFunction);

var
ptr : Pointer;

begin
ptr := fCodeGen.GetFunctionPointer;

funcPtr := TDoubleFunction(ptr);

end;

End Listing Two

22 October 1997 Delphi Informant

What’s Multi-Generational
Architecture, Anyway?
Inside InterBase: Part V

Greater Delphi
InterBase / Delphi

By Bill Todd
This final installment of the InterBase series exposes what really sets InterBase
apart from other database servers: its multi-generational, or versioning,

architecture. Most new technologies are developed to solve a problem posed by
a previous technology, and the InterBase versioning architecture is no exception.
Before exploring versioning, it’s important to look at transaction processing (the
previous technology, in this case), how it works, and why you need it.
The Complete Transaction
A transaction is a logical unit of work that
consists of one or more changes — to one
or more tables in a database — that must all
succeed or fail as a unit. Why do you need
transactions? Here’s the example that
appears in every database text: You go to
your ATM to transfer $1,000 from your sav-
ings account to your checking account. To
do this, the software must make two
changes to the database. It must decrease the
balance in your savings account, and
increase the balance in your checking
account. A problem arises if the database
software decreases the balance in your sav-
ings account, but crashes before it increases
the balance in your checking account. At
this point, you have lost $1,000.

You want both changes to succeed, or nei-
ther; that’s what transaction processing
ensures. The software would start a transac-
tion, reduce the balance in your savings
account, increase the balance in your check-
ing account, then commit the transaction.
Committing makes all the transaction’s
changes a permanent part of the database.
Up to the moment the transaction is com-
mitted, you can roll it back and undo the
changes. If the database server crashes before
the transaction is committed, the transac-
tion automatically will be rolled back when
the server restarts.
Dwelling in Isolation
When you work with transactions, picking a
transaction-isolation level is critical. It controls
how — or if — it sees changes made by
other transactions. The TransIsolation proper-
ty of Delphi’s Database component lets you
choose one of three levels.

The first isolation level is tiDirtyRead. If you
choose this isolation level, your transaction
can see every change made to the database
by other transactions — including those
that haven’t yet committed. This is undesir-
able, because it allows your transaction to
read a value that may yet be rolled back,
rendering that value incorrect. That’s why
many servers don’t support “dirty reads.”

The second isolation level is tiReadCommitted,
which allows your transaction to see only those
values written to the database by transactions
that have committed. This ensures that the val-
ues used have become a permanent part of the
database. However, it doesn’t protect your
transaction from reading a value, then having
another transaction change the value — again,
rendering it incorrect.

The third and most restrictive isolation level
is tiRepeatableRead. With repeatable read,
your transaction is guaranteed that a value
will remain constant, no matter how many
times it’s read from the database. Another

Greater DelphiGreater Delphi
way of looking at repeatable-read isolation is that it gives
your transaction a snapshot of the database at a moment in
time, and that’s the way your transaction will see the database
throughout its life. But a database server built on the locking
model can provide repeatable-read isolation only by prevent-
ing other transactions from updating the database until your
transaction commits or rolls back.

Not all database servers support all these isolation levels.
To determine what each level maps to for your server, see
the Delphi online Help for the TransIsolation property.
InterBase doesn’t support dirty reads; selecting tiDirtyRead
with InterBase will produce the read-committed level.
The Case of the Phantom Platinum
I asserted that the versioning architecture used in InterBase
was developed to solve a problem. To understand the problem,
consider the case of a large business whose many warehouses
are scattered across the country. One of the features in this
company’s new executive-information system is the ability to
generate an inventory-valuation report by warehouse. This
allows the president and CFO to see the exact value of the
goods in each warehouse. But the report may not be accurate
if the data is stored in a database server that uses the older
locking architecture. To understand why, consider what hap-
pens when this report is run.

The first and most important step in preparing the report is to
run a query that totals the value of all the items by warehouse. If
the database is large, this query will take some time to run.
Suppose the database server begins running the query, and totals
the value of the inventory in the Albany warehouse, then moves
on to Buffalo and then to Chicago. While the server is totaling
the value for the Chicago warehouse, someone in Albany com-
mits a transaction that transfers 10,000 platinum bars from
Albany to El Paso. Meanwhile, the query finishes Chicago,
moves on to Denver, and finally arrives at El Paso. The result is
that the 10,000 bars of platinum have been counted twice. Of
course, there would be no problem if the query transaction used
repeatable-read transaction isolation. Unfortunately, the only
way to provide repeatable read with a database server that uses
locking architecture is to lock the tables involved in the query, so
that no changes are made while the query is running. While this
solves the report problem, it imposes severe restrictions on con-
current database access by multiple users.
The Versioning Solution
The solution to this problem is a totally different database
architecture: versioning. In a versioning database, the status
of each transaction is tracked on the transaction-inventory
pages (TIP) of the database. Transactions can be active, com-
mitted, rolled back, or “in limbo.” When a new transaction
starts, it’s assigned a unique transaction number; it also gets
a copy of the TIP, so that it knows the status of all other
transactions at the time it started. When a transaction needs
to update a row in the database, it checks the TIP for any
other active transactions. If none are found, the row is
updated. However, if other transactions are active, the trans-
action writes a new version of the record in the database,
23 October 1997 Delphi Informant
and leaves the original version intact. When a transaction
updates a row in the database, it also stores its transaction
number as part of the record. InterBase does not actually
write a complete new copy of the row; instead, it writes a
difference record, which contains only the fields that have
changed. This conserves space in the database.

As a read transaction requests each row in a table, the database
software checks to see if the transaction number for the latest
version of the row is greater than the number of the transac-
tion that’s requesting it, and if the transaction was committed
at the time the read transaction started. If it is greater, or if the
transaction that created the latest version was active, the data-
base software looks back through the chain of prior versions
until it encounters one whose transaction number is less than
that of the transaction trying to read the row, and whose trans-
action status was committed at the time the read transaction
started. When the database manager finds the most recent ver-
sion that meets these criteria, it returns that version. The result
is repeatable-read transaction isolation without preventing
updates during the life of the read transaction. This is what sets
InterBase apart from other database servers.

Consider the following example of a row for which four
versions exist:

Tran=100 (status=committed)

Tran=80 (status=active when read started)

Tran=60 (status=rolled back)

Tran=40 (status=committed when read started)

Assume that a read transaction with transaction number
90 attempts to read this row. The read transaction will not
see the version of the row created by transaction 100,
because the update that created this version took place
after transaction 90 began. Transaction 90 also will not be
able to read the version created by transaction 80, even
though it has a lower transaction number, because transac-
tion 80 has not yet committed. Although the version for
transaction 60 still exists on disk, transaction 60 has rolled
back, and rolled back versions are always ignored. There-
fore, the version that transaction 90 will read is the ver-
sion created by transaction 40.

In this example, transaction 80 won’t be allowed to commit.
When transaction 80 attempts to commit, the database man-
ager will discover that transaction 100 has committed, and
transaction 80 will be rolled back.
Crash Proof
Another significant advantage of InterBase’s versioning
architecture is instantaneous crash recovery. Locking-model
databases support transaction processing by maintaining a
log file that contains information about all changes made
to the database. If the database software crashes and is
restarted, it must scan the entire log file to determine
which transactions were active at the time of the crash,
then roll them back. This can take some time. InterBase
doesn’t maintain a log file, because it doesn’t need one. The
record versions in the database provide all the information

Figure 1: The BDE Administrator. Changing the InterBase SQL
Link driver DRIVER FLAGS setting to 512, changes the default
mode from read-committed (the default) to snapshot.

Greater Delphi
needed to roll back an active transaction. This means that
if an InterBase server crashes, it will restart instantly,
because the only recovery it must perform is to scan the
transaction-inventory pages and change the status flags of
all active transactions to “rolled back.” No changes to the
data are required, because any record version whose status
is rolled back will be ignored when the record is read.
An Unfortunate Default
The ability to provide repeatable-read transaction isolation
without blocking update transactions is obviously a big
advantage for InterBase. However, the BDE doesn’t take
advantage of it. For some strange reason, the BDE InterBase
driver defaults to read-committed transaction isolation. To
overcome this, you must use the BDE Administrator to set
the DRIVER FLAGS property of the InterBase SQL Link
driver to 512 (see Figure 1). This changes the default mode
from read-committed to snapshot.
Conclusion
InterBase’s multi-generational architecture truly sets it
apart from other database servers. The ability to provide
repeatable-read transaction isolation without blocking
update transactions makes it ideal for executive-information
systems or any situation that must mix long-running read
transactions with updates. Its instantaneous crash recovery
is another big advantage for systems in which maximum
up-time is important. Just remember that when you access
InterBase with the BDE, you must set DRIVER FLAGS to
get these advantages. ∆

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix, AZ. He is a Contributing Editor of Delphi
Informant; co-author of Delphi 2: A Developer’s Guide [M&T Books, 1996],
Delphi: A Developer’s Guide [M&T Books, 1995], Creating Paradox for Windows
Applications [New Riders Publishing, 1994], and Paradox for Windows Power
Programming [QUE, 1995]; and a member of Team Borland, providing technical
support on CompuServe. He has also been a speaker at every Borland Developers
Conference. He can be reached on CompuServe at 71333,2146, on the Internet at
71333.2146@compuserve.com, or at (602) 802-0178.
24 October 1997 Delphi Informant

25 October 1997 Delphi Informant

Trying on TeeCharts
A New Component Gets Its Due

DBNavigator
Delphi 3

By Cary Jensen, Ph.D.
With its new interfaces, COM support, packages, remote data-broker
technology, and support for creating Web server extensions, Delphi has

taken Windows software development to a higher level. Unfortunately, these
important improvements can easily obscure some of the wonderful new,
updated components available in Delphi 3.
Among these are TeeCharts, which I’ll
address this month, and Decision Cube
components, which I’ll cover in next
month’s column. This is not, however, a
comprehensive treatment; that would
require hundreds of pages. To get the most
from TeeChart, read the teeMach TeeChart
version 3 Chart Guide. This guide, which
is in Microsoft Word format, is installed
with Delphi 3. Its default location is
C:\Program Files\Borland\Delphi
3\TeeChart\TChartV3.DOC. (If you don’t
have Word, use the Windows 95 WordPad,
or download the Word Viewer from
http://www.microsoft.com.)
TeeChart Basics
Delphi 3 ships with TeeChart version 3, a
powerful component for displaying and
printing graphs. Four components are related
to TeeChart in Delphi 3; three of these are
associated with the following classes: TChart,
TDBChart, and TDecisionGraph. The fourth
component, TQRChart on the QReport page
of the Component palette, is not an actual
TeeChart. Rather, it’s an interface object,
much like DataSource, that points to a
TChart or TDBChart.

You can include the Delphi 3 version of
TeeChart in the applications you create,
royalty-free. This version, however, doesn’t
ship with source code. Also, it doesn’t
work with Delphi 1 or 2. Both the source
code and the 16- and 32-bit versions of
TeeChart are part of TeeChart Pro. For
purchase information, right-click a
TeeChart component and select About

TeeChart, or visit http://ourworld.-
compuserve.com/homepages/dberneda.

TeeChart is a parent to one or more series, or
graphs. Consequently, it’s possible to define
more than one graph with a single TeeChart
component. Each series defines a chart type
and data. The version of TeeChart that ships
with Delphi includes 11 series: Line, Area,
Point (scatter), Bar (Bar, Pyramid, and
Cylinder), Horizontal Bar (Bar, Pyramid,
and Cylinder), Pie, Shape, Fast Line, Arrow,
Gantt, and Bubble.

Each series type has methods for defining
graph dimensions. While these can be
manipulated at run time, it’s much easier
to prepare a TeeChart at design time, using
the Chart Editor shown in Figure 1. To dis-
play this editor, either double-click a
TeeChart component (Chart, DBChart, or
DecisionGraph), or right-click the
TeeChart and select Edit Chart.

The Chart Editor has two primary pages.
The first page, labeled Chart (again, see
Figure 1), permits you to create, remove,
and copy series, as well as define overall
properties for the chart. The second page,
labeled Series, applies to the current series

DBNavigator
selected on the Chart page. For example, if a series named
Series1 is defined on the Chart page and highlighted,
selecting Series permits you to customize Series1. Like-
wise, if a series named Series2 is selected on the Chart
26 October 1997 Delphi Informant

Figure 1: Use the Chart Editor to define the series for a
TeeChart.

Figure 2: The Series page of the Chart Editor.

Figure 3: The TeeChart Gallery offers design-time choices.
page, the Series page permits you to control the characteris-
tics of Series2.

The Series page, shown in Figure 2, displays only those proper-
ties appropriate for a given series type. For example, if the select-
ed series is a pie chart, the Series page displays controls for cus-
tomizing a pie chart. You can switch between the various defined
series by using the ComboBox at the top of the Series page.
TeeChart Step-by-Step
The following steps demonstrate how to use a TeeChart to
create a pie chart.

Create a new project. Place Panel, DBChart, and Query com-
ponents on the main form of the project. Set the Panel’s Align
property to alBottom, and its Caption property to a blank
string. Next, set the DBChart’s Align property to alClient.

Define the data. Set the Query’s DatabaseName property to
DBDEMOS. Next, define a query that asks the question “What is
the relative contribution of each country to overall sales?”
Calculate the sum of the amounts paid in the orders table,
and summarize this value for each country in which cus-
tomers reside. The following query performs this calculation,
so enter it in the SQL property of the Query:

SELECT CUSTOMER."Country", SUM(ORDERS."AmountPaid")

FROM "CUSTOMER.DB" CUSTOMER, "ORDERS.DB" ORDERS

WHERE (CUSTOMER.CustNo = ORDERS.CustNo)

GROUP BY CUSTOMER."Country"

Now set the Query’s Active property to True. While this last
step isn’t essential for creating the chart, it permits you to see
it at design time.

Define the DBChart properties. Right-click the DBChart
object, and select Edit Chart. Define a new series by clicking
the Add button on the Series sub-page of the Chart page.
TeeChart displays the TeeChart Gallery shown in Figure 3.
Select Pie from the TeeChart Gallery, and click OK. This
returns your view to the Chart Editor.

With Series1 now selected, go to the Series page of the Chart
Editor. To link to the data provided by the Query, select the
Data Source page of the Series page, and select Dataset from the
displayed ComboBox. TeeChart now permits you to select a spe-
cific Dataset, the field to use for labels, and the field that repre-
sents the quantities to graph. Set Labels to Country, and set Pie to
SUM OF AmountPaid. Your screen should resemble Figure 4.

Now click the Close button on the Chart Editor to accept the
changes. Because the Query is active, the data it returns is
immediately visible in the DBChart component (see Figure 5).
Run the form by pressing 9; notice that some of the labels
overlap. This can be solved by rotating the angle of the pie
chart. Close the application and return to the designer.

Rotate the pie chart. Pie-chart rotation is subject to the prop-
erties of the series itself, rather than those of the DBChart
component. Once defined, a series can be selected directly in

Figure 4: Defining the data to display in a pie chart, using the
Chart Editor.

Figure 5: A pie chart displayed in a DBChart. Note the over-
lapping labels.

DBNavigator

Figure 6: With the TrackBar, a user can adjust the pie-chart
rotation at run time.
the Object Inspector, permitting you to control its properties at
design time. Therefore, you could select Series1 in the Object
Inspector, and set the RotationAngle property to a value other
than 0. (The Chart Editor also permits you to modify this
property.) However, like all published properties, this one can
be modified at run time, as well. Providing a run-time interface
to rotate the chart offers the user extra flexibility; let’s do that,
rather than limit the chart to a static, design-time adjustment.

Place a TrackBar in the Panel. Set its Min property to 0, and
its Max property to 360. Next, set the TrackBar TickStyle
property to tsNone. Double-click the TrackBar to create an
OnChange event handler, and modify it as follows:

procedure TForm1.TrackBar1Change(Sender: TObject);

begin
Series1.RotationAngle := TrackBar1.Position;

end;

Run the form. When you move the TrackBar, the pie chart
rotates (see Figure 6).
Adding Additional Series
A single TeeChart can have many different series; you can
use a single form to display multiple charts. A particular
27 October 1997 Delphi Informant
series is visible when its Active property is set to True.
Normally, you have only one series active at a time.
However, you can overlap charts, if you want, by setting
more than one series to Active.

While overlapping series provide a powerful analytical tool
for users, they’re useful only under certain circumstances. The
series of a given TeeChart share characteristics such as scale,
background gradient, and so forth; you should permit the
display of overlapping series only when their characteristics
are compatible.

The next example demonstrates how to create a second series
— a bar chart — with the DBChart created earlier. A bar
chart is used to display relative quantities, much like a pie
chart. TeeChart permits you to base each series on a different
Dataset — or even the same Dataset, if the data is consistent
with the chart style you choose.

Create a new series. Right-click the TeeChart, and select
Edit Chart. Click the Add button, then select Bar from the
TeeChart Gallery. Press OK to return to the Chart Editor.
Now that you have two series, you can select which is
active by using the check box next to the series name, in
the Series sub-page of the Chart page (refer to Figure 1).
Uncheck the check box next to Series1, so that only Series2
is displayed.

Set the properties. Select the Series page of the Chart
Editor. If Series2 is not selected in the ComboBox, select it.
Move to the DataSource page. Set Data Source to Dataset,
Dataset to Query1, Labels to Country, and Bar to SUM OF

AmountPaid. If the data could be further divided, such as
amount paid by year, you could set X to Year. In this case,
leave X blank. Your screen should resemble Figure 7.

Now select the General page of the Series page. Uncheck the
Show in Legend check box to turn off the legend for Series2.
Now return to the Series sub-page of the Chart page.
Uncheck Series2, and check Series1. Again, the pie chart is
displayed. Accept the Chart Editor by clicking Close.

Add a button. Add a button to the panel at the bottom of
the form. Set the caption of this button to Show Bars.
Double-click this button, and enter the event handler shown

Figure 7: Setting up a bar chart in the Chart Editor.

procedure TForm1.Button1Click(Sender: TObject);

var
i: Integer;

begin
for i := 0 to DBChart1.SeriesCount - 1 do

DBChart1.Series[I].Active := False;

if Button1.Caption = 'Show Bars' then
begin
Button1.Caption := 'Show Pie';

Series2.Active := True;

TrackBar1.Enabled := False;

end
else

begin
Button1.Caption := 'Show Bars';

Series1.Active := True;

TrackBar1.Enabled := True;

end;
end;

Figure 8: The button’s event handler.

DBNavigator

procedure TForm1.Button2Click(Sender: TObject);

var
i: Integer;

begin
if Series3 = nil then

begin
Series3 := TBarSeries.Create(Self);

DBChart1.AddSeries(Series3);

Series3.AddBar(16,'West',clBlue);

Series3.AddBar(25,'Central',clRed);

Series3.AddBar(35,'NorthEast',clYellow);

Series3.AddBar(25,'South',clGreen);

end;

for i := 0 to DBChart1.SeriesCount -1 do
DBChart1.Series[i].Active := False;

Series3.Active := True;

end;

Figure 10: The code to produce Series3.

Figure 9: The bar chart in DBChart.
in Figure 8. Now run the form. When you click Show Bars,
the bar chart appears, as shown in Figure 9. Clicking this
button a second time reverts the display to the pie chart.
Controlling Series at Run Time
You can control series at run time by calling the methods and
controlling the properties of TChart and the individual series.
For example, to add a new series, create a new TChartSeries
descendant, then add it to the TeeChart by calling the
AddSeries method:

procedure AddSeries(ASeries : TChartSeries);

where TChartSeries is one of the following classes:
TAreaSeries, TBarSeries, TCircledSeries, TCustomBarSeries,
TCustomSeries, TFastLineSeries, THorizBarSeries,
TLineSeries, TPieSeries, or TPointSeries. For example, to
add a new bar-chart series to TDBChart1, you would first
declare a TBarSeries instance variable in the form’s type
declaration. For example, you could add the following line
to the public section of your form’s type declaration:

Series3: TBarSeries;
28 October 1997 Delphi Informant
Next, call the TBarSeries constructor, and assign it to the
instance variable. Finally, use AddSeries to add this series to
your TeeChart. These last two steps look like this:

Series3 := TBarSeries.Create(Self);

DBChart1.AddSeries(Series3);

Once you’ve created the series and added it to the TeeChart,
you can work with the properties and methods of the series to
produce the chart. The methods and properties available
depend on the type of series you’ve created. After you finish
setting properties, you can make a particular series visible by
setting its Active property to True. Although more than one
series at a time can be active, you will generally want to turn
off other series by setting their Active properties to False.

This technique is demonstrated in the TEECHART project,
which is available for download (see the download instruc-
tions at the end of this article). Attached to the button
labeled Add/Show New Bar the code shown in Figure 10,
which tests for the existence of a series named Series3.
If it doesn’t exist, Series3 is created and populated with data
by calling the TBarSeries method AddBar. Finally, all series
associated with the TeeChart are made inactive; then the
new one is made active. The result is shown in Figure 11.

If you inspect the OnClick event handler in Figure 10, you’ll
notice that it’s possible to control series either individually

Figure 11: A bar chart created at run time, using TChartSeries
methods.

procedure TForm1.Button2Click(Sender: TObject);

var
i: Integer;

begin
if DBChart1.SeriesCount < 3 then

begin
DBChart1.AddSeries(TBarSeries.Create(Self));

TBarSeries(DBChart1.Series[2]).

AddBar(16,'West',clBlue);

TBarSeries(DBChart1.Series[2]).

AddBar(25,'Central',clRed);

TBarSeries(DBChart1.Series[2]).

AddBar(35,'NorthEast',clYellow);

TBarSeries(DBChart1.Series[2]).

AddBar(25,'South',clGreen);

end;

for i := 0 to DBChart1.SeriesCount -1 do
DBChart1.Series[i].Active := False;

DBChart1.Series[2].Active := True;

end;

Figure 12: This alternative requires no instance variable.

DBNavigator

Figure 14: A point chart created at run time, using random
numbers.

procedure TForm1.Button3Click(Sender: TObject);

var
i: Integer;

begin
if Series4 <> nil then

Series4.Free;

Randomize;

Series4 := TPointSeries.Create(Self);

DBChart1.AddSeries(Series4);

Series4.ShowInLegend := False;

for i := 1 to 100 do
Series4.AddXY(i,i*2 + Random(i),IntToStr(i),clRed);

for i := 1 to 100 do
Series4.AddXY(i,i*2,IntToStr(i),clBlue);

for i := 0 to DBChart1.SeriesCount -1 do
DBChart1.Series[i].Active := False;

Series4.Active := True;

end;

Figure 13: The code for a point chart.
though an instance variable, or through the Series property
of the TeeChart (an array of pointers to the series owned by
the TeeChart). Although a TBarSeries variable was declared
in the preceding example, there are alternatives. For exam-
ple, the code in Figure 12 would produce the same effect
without the need for an instance variable.

As mentioned previously, each TChartSeries descendent has
different methods, depending on the type of series it repre-
sents. For example, when creating a point chart, you can’t
call AddBar; you would use AddXY instead. This is demon-
strated in Figure 13, which is associated with the button
labeled Add/Show New Point in the TEECHART project.

This code creates a new series each time, using Delphi’s built-
in random-number generator. This example shows that you
can create a chart using any data, not just that stored in a
Dataset. In fact, with the appropriate Add method for the
series you’re creating, you can define the contents of a chart
based on any valid data, regardless of origin. Figure 14 shows
a chart produced by this code.
Conclusion
Using one of the TeeChart components, you can quickly cre-
ate business graphs and charts, and include them in your
29 October 1997 Delphi Informant
Delphi applications. Furthermore, TeeChart is flexible
enough to permit your charts to be built at either design time
or run time, from any data available to your application.

Next month, DBNavigator takes a look at the Decision Cube
components available in the Client/Server and Enterprise edi-
tions of Delphi 3. Among these components is the
DecisionGraph, which is itself a TeeChart descendant. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\OCT\DI9710CJ.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including Delphi
In Depth [Osborne/McGraw-Hill, 1996]. Cary is also a Contributing Editor of
Delphi Informant, as well as a member of the Delphi Advisory Board for the 1997
Borland Developers Conference. For information concerning Jensen Data Systems’
Delphi consulting and training services, visit the Jensen Data Systems Web site at
http://idt.net/~jdsi. You can also reach Jensen Data Systems at (281) 359-
3311, or via e-mail at cjensen@compuserve.com.

Searching Multiple Directories, etc.
Delphi Tips and Techniques

At Your Fingertips
Delphi / Object Pascal

By John P. Gambrell

Figure 1: The

procedure TFo

var
Result, Dir

x : Integer

begin
DirList :=

for x := 0

DirList :

Result := F

if Result =

ShowMessa

else
Edit2.Tex

end;

procedure TFo

begin
Listbox1.It

end;

Figure 2: The
Search button

30 October 1997 Delphi Informant
What’s the best way to search for a file in multiple directories?
Delphi’s FileSearch function seeks out the pathname of a specified file in

one or many directories with a single call. If the file is found, it returns the
fully-qualified path name of the file; otherwise, it returns an empty string.
“Fully qualified” means the string contains enough path information for you
to access the file directly.
If the file is in the current directory, no path
information will be included; if it isn’t, the
appropriate path will be prepended to the file-
name. FileSearch requires two arguments: the
name of the file and the list of directories to
FileSearch example.

rm1.btnSearchClick(Sender: TObject);

List :string;
;

'';

to ListBox1.Items.Count-1 do
= DirList + ListBox1.Items[x] + ';';

ileSearch(Edit1.Text,DirList);

 '' then
ge('File ' + Edit1.Text + ' was not found.')

t := Result;

rm1.btnAddClick(Sender: TObject);

ems.Add(DirectoryListBox1.Directory);

OnClick event handlers for the Add and Begin
s.
search. The directory list is of type string and
contains directory names separated by semi-
colons (e.g. C:\Windows;C:\Windows\System).

Figure 1 shows an example application that
demonstrates FileSearch. To use it, enter the file-
name to search, then use the DirectoryListBox
component to add directories to the ListBox,
then press the Begin Search button. Figure 2
shows the code for the OnClick event handlers
for the Add and Begin Search buttons. The
search first builds a directory list by concate-
nating the items in the ListBox and calling the
FileSearch function. If the file is found, the
second Edit component displays the fully-
qualified path name of the file (otherwise a
message box alerts the user).
How does the parent/child relationship
work for Delphi windows controls?
Every windows control includes the property
Parent that specifies its parent control.
Controls assigned to another control via the
Parent property become child controls to that
parent. For example, RadioButton compo-
nents placed inside a GroupBox are the chil-
dren of that GroupBox; thus, the
RadioButtons relate to each other, so only
one can be checked at a time. When a parent
control is destroyed, all the child controls
assigned to that parent are destroyed as well.

This example demonstrates the relationship
between parent and child controls with the
use of two GroupBoxes and a few
RadioButtons, as shown in Figure 3.
Clicking on the Change Parent of

RadioButton3 button reassigns
RadioButton3’s Parent property to the other

Figure 3: The parent/child control example.

procedure TForm1.btnChangeParentClick(Sender: TObject);

begin
try

with RadioButton3 do begin
if Parent.Name = 'GroupBox2' then

begin
if Checked then Checked := False;

Parent := Groupbox1;

end
else
begin
if Checked then Checked := False;

Parent := GroupBox2;

end;
Label1.Caption :=

Parent.Name + ' is the parent of RadioButton3';

end;
except
ShowMessage('GroupBox1 does not exist.');

end;
end;

procedure TForm1.btnDestroyClick(Sender: TObject);

begin
Groupbox1.Free;

end;

end.

Figure 4: The OnClick event handlers for the Change Parent
of RadioButton3 and Destroy Groupbox1 buttons.

At Your Fingertips
GroupBox; it then relates to the RadioButtons in the other
GroupBox (not something you want to practice, obvious-
ly). Clicking on the Destroy Groupbox1 button calls the
Destroy method for GroupBox1, which in turn destroys its
children RadioButtons. See Figure 4 for the code assigned
to the OnClick event handlers for the Change Parent of

RadioButton3 and Destroy Groupbox1 buttons. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\OCT\ DI9710JG.

John Gambrell is a consultant with Ensemble Corporation, specializing in
client/server and Internet application development. John can be reached at
jgambrell@ensemble.net.
31 October 1997 Delphi Informant

32 October 1997 Delphi Informant

The Birth of Raptor
RADifying Delphi

New & Used

By Alan C. Moore, Ph.D.
Iknow, I know — Delphi is already RAD. But before you get too complacent
with the Delphi IDE and the various built-in tools Borland provides, you’d bet-

ter check out Raptor, the latest in a series of powerful development tools from
Eagle Software. If you’ve used the Component Development Kit (see Robin
Karlin’s review in the May 1997 Delphi Informant) or the component testing
tool, reAct, you are already familiar with Eagle Software’s commitment to excel-
lence and innovation. Their latest creation, Raptor, is much more than simply
another useful tool — it has the potential to revolutionize how you work in
Delphi 3, and to considerably enhance your productivity. Let’s find out how by
examining its major features.
Raptor has two main components: a greatly
enhanced Object Pascal editor, and a series of
panels that surround the editor, providing
many powerful utilities. Figure 1 shows how
Raptor and its panels integrate with the
Delphi IDE. Both the enhanced editor and
the panels deserve a good deal of attention;
let’s begin with the editor.
The Editor of Your Dreams
If you were to sit down and compile a wish-list
of features you wanted in your Delphi editor,
what would it include? Of course, you’d want
complete integration with the IDE. Your wish-
list might also include a powerful and extend-
able set of keyboard templates, bookmarks, and
other code-navigational tools, a means of keep-
ing track of code changes, and a Clipboard
with recent entries (history) to paste into your
code. Believe it or not, every one of these fea-
tures is part of the Raptor editor!

And while other third-party code editors,
such as Multi-Edit for Windows by American
Cybernetics (see Moore’s review in the April
1997 Delphi Informant), provide some of
these features, none of them provide full inte-
gration with the Delphi IDE. So, while you
can save a lot of keystrokes by using such
products, when it’s time to compile and
debug, you must switch back to Delphi. With
Raptor, those hassles are history. Because
you’re working within Delphi, you have
access to Code Insight, the integrated debug-
ger, and other essential tools that are other-
wise unavailable outside the IDE.

Figure 1: Raptor adds considerable functionality to Delphi’s
editor (center right) and powerful panels (center and bottom).

New & Used
One of the features I liked about Multi-Edit was its keyboard
templates — who wants to type the same patterns over and
over, day after day? Here’s an area where Raptor really shines,
providing over 600 highly intuitive keyboard templates.
They’re so intuitive, in fact, that I was able to figure out most
of them without even checking the Help screens. That’s not
surprising, because all of them are geared towards Object
Pascal and the kind of code we write in Delphi every day.
Let’s look at one example.

Type v, then hit M; then type bl and hit M; then
type MyBooleanVariable. Finally, with the cursor over the
last name (“MyBooleanVariable”), hit CC (or your hot
key for copying to the Clipboard). Move down a line, then
type b and hit M; move down another line, and type sf.
These few keystrokes produce the following code snippet:
Template Expansion
v var
bl : boolean;
b begin
sf {paste} := false;
e end;
sm ShowMessage
acf Application.CreateForm(T{paste}, {paste}
rs ResourceString
ifnax if not assigned({paste}) then exit
tf a try..finally block
lb {paste}.Handle := LoadBitmap(HInstance, PChar(' '));

Figure 2: A small sampling of Raptor’s comprehensive set of keyboard
templates.
var
MyBooleanVariable : Boolean;

begin
MyBooleanVariable := False;

As you’ve probably figured out, M is the trigger
key. If you want, you can reconfigure it to
VM (a request I made as a beta-tester.) Most
of the templates are static and obvious (they always
expand the same way each time). The last one
(“sf ”) deserves special mention, as it is dynamic
(my term). Like many other templates, “sf ” (or “set
to false”) inserts the current contents of the
Clipboard before the assignment, “ := False;”.
Figure 2 lists these and other templates with their
expansions. Note that {paste} indicates the point in
a dynamic template where text will be inserted
Figure 3: "FMT" (one of over 600 keyboard templates) expands
to "Format (X, [])" placing the cursor at the X.
from the Clipboard; note also that many templates, includ-
ing “bl,” appropriately place the cursor before or within the
expanded text.

If you don’t like some of the keyboard assignments, you
can easily change them; and with just a little more effort,
you can create your own. As previously mentioned, these
templates can be either static or dynamic. Figure 3 shows
the template editor, where you can view, edit, or create new
templates. Note the special shortcuts that are provided to
add a Clipboard paste area to your template ({paste}, as
shown in the previous examples), to insert the editing cur-
sor at any location within the expanded code, or to add
backspaces (hard and soft), tabs, character deletion, and
date/time information. Raptor templates also allow you to
place special markers in the code, to indicate insertion
points. (After you’ve finished entering code at one insertion
point, you can press E to jump to the next one.)

Templates are also smart: They expand in your particular
code style, which is configurable. They’re also smart enough
not to expand within comments or strings. You can bring up
your own dialog box from within a Raptor template, or call
specially created string functions. Clearly, these templates are
a tremendous help in accelerating coding speed, but the good
news doesn’t stop here.
33 October 1997 Delphi Informant
How many of you have experienced this: While developing a
new class, you find yourself constantly jumping back and
forth between declarations in the interface section and the
enabling code in the implementation section. Wouldn’t it be
great to be able to drop multiple markers wherever you are, so
you can quickly jump from one active section of code to
another? With Raptor’s editor, you can.

Figure 4: Raptor’s powerful file searching tool provides speed
buttons to access Delphi’s main folders.

New & Used

Figure 5: Raptor’s Hot List provides easy access to
non-component units and classes.
Similarly, when you’re in the heat of creative energy, coding like
a maniac, it’s easy to forget where you’ve made changes to your
code. If you add too many lines in different locations and forget
what you’ve done, you might be in trouble. I’ve done this
myself. With Raptor, you’ll never face this nightmare again. It
monitors every change you make, leaving a descriptive marker
in the gutter to the right of your code (the place that Delphi 3
reserves for breakpoint markers). You can instantly jump
through all your newly added and modified lines using a hot
key or the command menu.

Another particularly powerful and useful feature is Raptor’s
Clipboard history. Every time you copy or cut text to the
Clipboard from inside the editor, that text is also saved to
Raptor’s special Clipboard, which is subdivided into nine
boxes. As you cut and copy text, the most recent text placed
in the Windows Clipboard is also inserted in the beginning of
the Raptor Clipboard (buffer one). All other Clipboard buffers
are shifted to the back of the queue by one, and the last
Clipboard buffer (buffer nine) is discarded. It gets even better.
You can lock buffers so that often-used entries won’t be erased.
Best of all, your settings are persistent from one Delphi session
to the next. Conveniently, Raptor’s Clipboard history displays
the selected text in the same font and syntax highlight settings
as in Delphi.

Raptor includes other useful tools that enhance your naviga-
tion within the editor. I have always been a big fan of book-
marks; they just never went quite far enough. Raptor pro-
vides bookmarks that are named, persistent (yes!), and com-
patible with version control for team programming. Its stack-
based code markers are also persistent; they enable jumping
through your code in the order they are set, or back and forth
between two points. You can also retrace your steps. It’s a lot
like leaving florescent markers as you explore a large cave
with many branches. You can work with large unit files over
half a meg as easily as with files one-tenth the size.

Finally, Raptor provides a sophisticated set of searching, select-
ing, and formatting options available from a pop-up menu. You
can quickly jump to the next occurrence of the current word. If
you’ve selected a block of text, you can quickly perform a num-
ber of common operations, including indenting/unindenting,
commenting/uncommenting (in any of the styles), changing case
in all of the usual ways, and even sorting the block. Remarkably,
Raptor changes Delphi’s command menu depending on the
amount of text selected, with appropriate responses for no selec-
tion, multi-line selection, or selection within a single line. We’ve
taken a detailed look at Raptor’s enhanced editor, but we’ve bare-
ly scratched the surface. Now, let’s take a look at its panels.
Panels, Panels Everywhere
Raptor comes with a number of built-in panels to address many
special programming needs. It provides an open architecture
that allows you to create your own panels and add-ons. At the
time of this writing, Raptor was still in beta, and included the
following panels: Files, Bookmarks, Tutorial, Message View
(Delphi’s compiler messages), Statistics, Search Files, and Hot
List. Some of these, such as Bookmarks, are closely related to
34 October 1997 Delphi Informant
the editor. Others, such as the Files and the Hot List, allow for
quick and easy file imports into your current project (as well as
other useful tasks). Let’s briefly examine each.

Raptor’s Search Files panel (see Figure 4) is considerably
faster than Delphi’s. All the expected options — search pat-
tern, search path, file spec, case sensitivity, and subdirectory
search — are included. There are also speed buttons to quick-
ly set the path, or search within the current project directory,
the VCL directory, or the run-time library (RTL) directory.
Other buttons provide a means to toggle various elements of
the display, print results, get help, or examine the File Grep
properties dialog box. The latter provides control over the
visual display of the search results, the maximum number of
entries, and the thread priority (the default is Highest, just
short of Time Critical.)

The Hot List panel (see Figure 5) allows you to organize and
instantly access frequently used groups of files. You could
have one hot folder for all your include files, another for all
your utility files, and another for your packages. I use this
feature for easy access to TurboPower’s SysTools library with
its many container classes, string functions, mathematical
functions, and sorting routines. The Hot List panel includes
speed buttons to create, delete, or rename folders, to add or
remove files, and to open a single file or all the files in the
current folder.

In addition to the two specialized file-manipulation panels
we’ve just examined, Raptor includes a full-featured Files
panel (see Figure 6) that allows easy navigation through
folders and files. Again, there are speed buttons to open,

Figure 6: Raptor’s Files panel includes all of the common
operations.

New & Used

Figure 7: The special Bookmarks panel.

Figure 8: The Statistics panel provides detailed time-tracking
and productivity information.
copy, rename, touch, and yes, delete files. It keeps track of
your favorite directories, so if you want to add files to your
current project from several directories, you can do so easily.
You can even bring up a DOS prompt from this panel. As
with other panels, there is a properties dialog box that gives
you complete control over which buttons are displayed, and
which actions require confirmation.

When I described the enhanced code editor, I mentioned its
bookmarks. Within the editor, you can manage and use
bookmarks easily. In addition, there is a Bookmarks panel
that provides a summary of all the bookmarks set in the cur-
rent project and its files (see Figure 7). By double-clicking
any of these bookmarks, you can easily jump to that loca-
tion. Has source-file navigation ever been easier than this?

The Statistics panel (see Figure 8) is fascinating and highly
useful. In and of itself, it provides a powerful means of mar-
keting this product to Delphi developers. This panel moni-
tors your keystrokes and your use of Raptor’s features as you
work on your project, monitoring and storing all kinds of
time-tracking and editing statistics, including:

lines of code added, deleted, or changed;
actual keystrokes;
code navigation keys, real and effective (based on shortcuts);
total editing times (with or without Raptor’s features); and
a summary of average keystrokes per minute and the
increase in productivity by using Raptor.

In case you’re concerned about my apparent lack of typing
skills, please be aware that I spent much more time in my
35 October 1997 Delphi Informant
word processor than in the Raptor/Delphi editor this ses-
sion! Later I learned that I could adjust Raptor’s Statistics
panel settings to pause after 0.1 minutes of inactivity (the
default is three minutes). This produces a more accurate
keystroke/minute average.
Configuring and Adding New Panels
The one panel we haven’t discussed is the Tutorial panel. This
panel provides detailed information about every aspect of
Raptor: its editor, panels, and the Raptor API (RAPI). How
customizable is Raptor? Let’s see.

By right-clicking on the editor panel and choosing Panels, you
can open or close any panel, or maximize the code-editing
panel. Similarly, by right-clicking on the various panels, you
can move them to the top, bottom, right, or left; you can also
hide them or float them independent of the other panels.
This gives you tremendous control over the appearance of the
expanded IDE. Just as the main editing panel has an expand-
ed pop-up menu, each of the other panels has its own pop-up
menu that provides quick and easy access to common tasks.
The good news doesn’t stop here. With Raptor, you can easily
add your own tools and panels. (Several third-party tool mak-
ers are currently working on placing their utilities within
Raptor panels for easy access.) Let’s take a brief look at RAPI.
RAPI: A Quick Overview
Raptor’s API supports two kinds of add-ons: standard and panel.
Standard plug-ins allow you to add new menu commands either
to Delphi’s menu system or to its editor’s pop-up menu. You can
also implement special string functions, or call up dialog boxes
to perform any task you like. String functions are added to
Raptor’s keyboard templates. This way, templates can be smarter
about the code they manipulate. You can provide even more
power and control with “Method” string functions. These allow
you to display a special dialog box, enter method names and
parameters, and return an appropriate value.

At first glance, the process for adding plug-ins seems
rather involved, consisting of 14 steps for standard plug-
ins, and nine for panel plug-ins. However, these steps are
all documented and bookmarked in template files available
from the Tutorial panel. Many of the steps are as simple as

New & Used
replacing placeholder text with something meaningful for
your plug-in. Soon this will be even easier; Eagle Software
plans to develop a Raptor API wizard, so many of these
steps will appear as choices in a dialog box.

Again, each of the steps needed to create your own panels and
install them in Delphi is explained in the tutorial. The main steps
include the following:

Create a Delphi package to contain your panel.
Create a unit to implement the functionality of your
new panel.
Install and test your new panel.
Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has
published a number of articles in various technical journals. Using Delphi, he
specializes in writing custom components and implementing multimedia
capabilities in applications, particularly sound and music. You can reach Alan on
the Internet at acmdoc@aol.com.
Looking to the Future
Raptor’s goal, as explained by its chief architect, Mark Miller, is
to allow developers to code faster than they can think. While
such a goal may be unattainable, I think you’ll be amazed at
how closely Raptor allows you to approach the speed of
thought. And there’s more to come. At the time of this writing
(one week after the Borland Developers Conference), Raptor is
still in beta; the main focus of the beta process continues to be
adding and enhancing features, rather than fixing bugs.
Therefore, I am certain this product will be even more impres-
sive when it is released. (At this writing, Eagle Software had
planned to release Raptor in late September.) Let’s take a peek
at some of the projected enhancements.

The next beta version will provide better support for high-
speed navigation, with several new features. These will include
cursor toggling between a method’s declaration and its imple-
mentation, the ability to jump to any method in the current
file using a combo-box pick list, and more. There will be a cus-
tomizable speedbar at the top of the edit window. New directo-
ry and file comparison tools are also planned. The Statistics
panel will be expanded to track time spent compiling (so if you
spend a large portion of your day watching the compiler’s hour-
glass, you can finally provide evidence to your boss — and get
that new 200+ MHz Pentium you deserve.) In addition,
Raptor’s interface will be significantly expanded.

Can you tell how excited I am about this product? I am
not alone. Of all the vendor exhibits at the Borland
Developers Conference in Nashville, none drew more con-
sistently large crowds than that of Eagle Software. As out-
rageous as it sounds, Raptor was being expanded as it was
being demonstrated — with new templates and with a new
panel contributed by a beta tester. I expect this is only the
first of a number of articles I will write about Raptor. I
plan to fully explore its API, and add a panel or add-on of
my own, not to mention some new templates. Watch for
detailed information on exploiting Raptor’s open interface
in future issues.

I would not be at all surprised to see Raptor win many
awards after its release, including Product of the Year. Those
of you who have recently upgraded from Delphi 2 to Delphi
3 are no doubt pleased by the many enhancements. Well,
you’d better sit down. When you add Raptor to Delphi 3
(the only version for which it is available), you may feel —
36 October 1997 Delphi Informant
as I did — that you have
moved from Delphi 3 to
Delphi 4! There’s that much
of a difference.

My recommendation is simple:
If you do any amount of cod-
ing at all, get Raptor. If you
work for a company that sup-
plies all your Delphi tools,
don’t wait for your boss to get
this for you — get it yourself!
(At the introductory price of
US$149, you’ll have to search
far and wide to find a better
deal.) With the immediate and
significant increase in produc-
tivity, it may not be long
before every Delphi 3 develop-
er in your shop has Raptor.
You may even find yourself
promoted because of your for-
ward vision. With this power-
ful and revolutionary tool, this
is truly an exciting time to be
programming in Delphi.
Raptor definitely RADifies
Delphi. ∆
Raptor is the ultimate Delphi add-on. It
enhances Delphi’s editor with powerful
navigational tools and a comprehen-
sive set of over 600 keyboard tem-
plates. These templates are customiz-
able and extendable, and provide quick
and easy access to common Object
Pascal structures. Raptor also includes
powerful panels that surround the IDE
editor and provide many useful tools,
including a Hot List to access common-
ly used files, a file search panel, a file
manager panel, etc. With the Raptor
API, you can add your own panels, or
customize Delphi’s IDE — without
writing an expert.

At this writing, Eagle Software
planned to release Raptor in late
September, 1997.

Eagle Software, Inc.
12021 Wilshire Blvd., Suite 655
Los Angeles, CA 90025
Phone: (310) 441-4096
Fax: (310) 441-1996
Web Site: http://www.eagle-soft-
ware.com
Price: Introductory price (valid for 2
months after release) US$149; after
this period, US$199.

37

TextFile
Exploring Delphi’s Hidden Paths
 October 1997 Delphi Informant
gramming — particularly
some of the more advanced
aspects of component writing
— Hidden focuses exclusively
on Delphi’s Open Tools API.
In a practical sense, you learn
how to write Delphi experts
— or wizards, as we call them
these days. While Secrets pro-
vides excellent discussions of
the differences between
Delphi 1 and 2, this current
volume contains only mini-
mal information on the earlier
Delphi versions. Still, as
Lischner points out, many of
the function calls are applica-
ble to Delphi 2, at least.

Both books share a similar
writing style. There are quite a
few authors who write about
advanced Delphi topics.
However, I am not aware of
anyone who writes more clear-
ly about such topics, making
them accessible to a large
number of Delphi developers.
Some might criticize Lischner’s
use of repetition in his exposi-
tion of topics. However, his
well organized and methodical
approach increases his poten-
tial audience. In fact, anyone
with a solid foundation in
Delphi could read this book
with much benefit. At the very
least, anyone who adds this
reference to their Delphi
library will end up with a nice
collection of new Delphi
experts, including an
enhanced Project Browser and

“Exploring Delphi’s Hidden Paths”
continued on page 38
Special Edition Using Delphi 2 and Special Edition Using Delphi 3
practical flavor. This will
delight those who are put off
by too much theory and text
that falls into the nether
regions of advanced topics. By
contrast, the cadre of authors
who produced Using Delphi 3
includes many Borland engi-
neers among its numbers.

The organization and content
of the two books are similar,
but they maintain their indi-
viduality. Both provide a very
comprehensive and thorough
introduction to Delphi pro-
gramming, best suited for
developers well versed in pro-
gramming but still learning
Delphi. However, if you’ve
mastered Delphi’s essentials,
and are looking for something
more esoteric, these books will
probably disappoint you.
Before you make any deci-
sions, I’ll discuss some of the
specific topics covered in each.

Using Delphi 2. Like most
Delphi books that aspire to
be comprehensive, Using
Delphi 2 begins by present-
ing some of the basic prin-
ciples of Windows pro-
gramming using Delphi.
Here you’ll find all the
expected topics, from an
introduction to Object-

“Using Delphi 2 & 3”
continued on page 38
The release of Ray Lischner’s
eagerly anticipated book coin-
cided with this year’s Borland
Developers Conference.
Although an ample supply was
available — several hundred at
least — all of them sold out
before the end of the confer-
ence. This is just the begin-
ning. I can’t think of any other
new Delphi author who creat-
ed more of a sensation than
this author did with his Secrets
of Delphi 2 (see my review in
the February, 1997 issue of
Delphi Informant). If we com-
pare this latest journey into
undocumented territory with
the earlier one, we find many
similarities and a few impor-
tant differences. I’ll begin with
a general comparison; then,
through a series of questions,
I’ll discuss some of the major
topics Lischner discusses.

Both Secrets of Delphi 2 and
the newest book, Hidden
Paths of Delphi 3, concentrate
on aspects of Delphi that are
either poorly documented or
not documented at all in
Borland’s manuals. Both con-
tain information you would
have a hard time finding else-
where. While Secrets explores
many aspects of Delphi pro-
Most readers are probably
familiar with QUE’s popular
Using series. The particular
software covered can be any-
thing in a broad spectrum,
from Fortran to PageMaker.
One of my first Pascal books
was Using Turbo Pascal, long
since passed on to my son. In
going through my library, I
found three remaining titles:
Using Turbo Prolog, Using
Reflex, and Using WordPerfect
for Windows. The common
thread that runs through all
these books is the publisher’s
aim to provide a complete
reference in a single volume.
This goal is evident in the
volumes I’ll be discussing in
this review: Special Edition
Using Delphi 2 and Special
Edition Using Delphi 3.

While Using Delphi 2 can’t
boast a well-known author
among its nine contributors,
it hardly suffers. In fact, all
the authors are active devel-
opers rather than profes-
sional writers, giving the
volume a “real world” and

TextFile
Exploring Delphi’s Hidden Paths (cont.)
38 October 1997 Delphi Informant

“Using Delphi 2 & 3”
continued on page 39
nication; but there’s an
internal, event-driven sys-
tem that kicks into gear as
soon as an event is invoked.
Question: What are noti-
fiers, and how are they used
in Delphi experts? Lischner
shows us how notifiers pro-
vide information about
major occurrences in the
Delphi IDE, such as open-
ing or closing units, open-
ing or closing projects, and
so on. He explains that add-
in experts have a special
notifier that we can use to
keep track of events and file
manipulations.

To make working with noti-
fiers easier, Lischner creates
TProjectNotifier and
TModuleNotifier. These
classes encapsulate the struc-
ture of these notifier classes
in a way that makes them
easily available when we’re
writing experts. The various
settings and events are avail-
able as properties, and many
of the internal details are
handled for us. In fact, there
are event handlers for each
notification in these classes.

Have you heard about or
worked with editor inter-
faces? If your expert will be
modifying code, whether at
the project or unit level,
you must be concerned
about text editing. Editor
interfaces provide easy
access to Delphi’s Code
Editor. In demonstrating
the uses of this interface,
Lischner identifies some
serious bugs in the first
release of Delphi 3 (indicat-
ed by a bug graphic and the
word “warning” in the mar-
gin). This alone should
make this a worthwhile
investment for anyone
working with Delphi
experts. No doubt, Lischner
spent many hours crashing
his system so we wouldn’t
have to.

This new book by Ray
Lischner is right at the top of
my list of favorite Delphi
books, next to his Secrets of
Delphi 2. There’s very little I
can find to complain about. I
would have liked to have seen
information about which
functions are available in
which Delphi versions.
However, the book clearly
identifies itself as a “Delphi
3” book, so I shouldn’t neces-
sarily have expected that. In
conclusion, I recommend this
book very highly to every
serious Delphi programmer.
Even if you’ve never consid-
ered writing a Delphi expert,
this book will show you why
and when you should, and
how to go about it.

— Alan C. Moore, Ph.D.

Hidden Paths of Delphi 3
by Ray Lischner, Informant
Press, 10519 E. Stockton
Blvd., Ste. 100, Elk Grove,
CA 95624, (916) 686-6610.
ISBN: 0-9657366-0-1
Price: US$39.99
(350 pages, CD-ROM)
Using Delphi 2 & 3 (cont.)
component writing, you
should read Ray Konopka’s
Developing Custom Delphi 3
Components [Coriolis
Group Books, 1997], and
Ray Lischner’s Secrets of
Delphi 2 [Waite Group
Press, 1996].

Using Delphi 3. Compared
to its predecessor, Using
Delphi 3 is expanded con-
siderably. It’s considerably
longer, and most of the
topics are discussed in
greater depth. It also
includes additional chapters
on advanced Object Pascal
topics, such as Run-Time
Type Information and the
seldom-discussed Math
unit. There are hidden
gems in both volumes, but
several are expanded quite a
bit in the latter version. For
example, I was delighted to
find information about
using the TDump utility to
gather information about a
DLL; I was also pleased to
see a discussion of thunk-
ing, and the various meth-
ods used to enable commu-
nication between 16- and
32-bit DLLs.
some useful components I’ll be
discussing later. So, what are
the topics?

Quiz Time! This is new mater-
ial for most of us — lots of
new terms and concepts, and
dozens of new methods.
Therefore, I’ll introduce many
of the topical discussions with
a question or a series of ques-
tions. (If you can answer all of
them completely, then you
should think about writing a
book yourself.) All these are
questions Lischner answers
and expounds upon.

Working with memory and
saving and retrieving files are
always important topics.
Internally, how does Delphi
use read-write memory? Under
what circumstances is read-
only memory used? What
problems can occur if we are
unaware or ignore the differ-
ences? What kinds of streams
can best be used in Delphi
experts? What are interface
streams, and how can we use
them? What internal methods
does Delphi make available to
us, so we can edit a form defi-
nition (*.DFM) file as text?
These questions certainly
imply that we have access to a
lot of hidden power, and we’re
just getting started.

Communication is also
important in a Delphi appli-
cation, or in a Delphi tool.
The Open Tools API pro-
vides a lot of control here, as
well. Consider these ques-
tions: How can we use drag-
and-drop functionality in
our expert DLLs? How do
we get information about,
and access, Delphi’s menu
system? (One chapter focuses
exclusively on menu inter-
faces in add-in experts.)

The user interface is a cru-
cial part of Delphi commu-
Oriented Programming to a
tour of Delphi’s IDE. The
section on Object Pascal is
brief but cogent; and all
these topics are covered in
detail.

If you haven’t explored all
the tools that ship with
Delphi, both volumes
include useful discussions
on ReportSmith, the
Database Desktop, the
Local InterBase Server, and
Delphi’s built-in debugging
tools. While most of the
topics are handled in a suc-
cinct (some would say cur-
sory) manner, there are
exceptions. One of the bet-
ter discussions I’ve seen is
that of threads, as well as
the discussion on writing
and using DLLs. The
examples provided are
very good.

There are chapters on using
Delphi for database and
Internet programming, as
well as a chapter on compo-
nent writing. While they
provide an excellent foun-
dation, they don’t often
venture into more advanced
topics. So, if you want to
get heavily involved in

Using Delphi 2 & 3 (cont.)

TextFile
Eric Uber, the only contributor to
both volumes, contributed an excel-
lent chapter in Using Delphi 3 about
using C++ with Delphi. Among other
things, he shows the reader how to
introduce C++ code into a Delphi
project by using object (*.OBJ) files or
DLLs, concluding with a discussion of
type conversions (with a comprehen-
sive chart).

Similar to Using Delphi 2’s excellent
discussion of threads, Using Delphi 3
also provides an excellent introduction
to this topic — one of the major capa-
bilities introduced with Delphi 2.
Starting with an overview of multi-
tasking, and covering the Synchronize
procedure, thread priorities, and
thread cooperation, both volumes will
give you a good start in writing multi-
threaded applications. Using Delphi 3
goes further, including a lengthy dis-
course on Critical Sections, or how
you can protect vital data or processes.

I would recommend either of these
volumes to any programmer who is
39 October 1997 Delphi Informant
looking for a complete reference for
either of the Delphi 32-bit environ-
ments. Of the two, I prefer Using
Delphi 3, because it provides addition-
al information and is written at a
more advanced level. Using Delphi 2,
on the other hand, provides an excel-
lent, practical introduction to this rich
programming environment.

— Alan C. Moore, Ph.D.

Special Edition Using Delphi 2 by
Jonathan Matcho, et al., QUE, 201 W.
103rd St., Indianapolis, IN 46290,
(800) 428-5331 or (317) 228-4231.
ISBN: 0-7897-0591-5
Price: US$49.99
(891 pages, CD-ROM)

Special Edition Using Delphi 3 by Todd
Miller and David Powell, et al., QUE,
201 W. 103rd St., Indianapolis, IN
46290, (800) 428-5331 or
(317) 228-4231.
ISBN: 0-7897-1118-4
Price: US$49.99
(1,043 pages, CD-ROM)

File | New
Directions / Commentary

Nobody’s Perfect ... Not Even Delphi 3
A“must” upgrade for Delphi developers, Delphi 3 provides a host of new features and functionality that
make it, perhaps, the best environment ever for developing Win32 applications. Yet, because no

“perfect” development tool has been developed, it behooves us to note some of Delphi 3’s shortcomings
as well; in doing so, we’ll be better informed about what to use, avoid, or work around.
The VCL has always been a centerpiece
of the Delphi architecture. Therefore,
the robustness and flexibility of these
components are critical factors in the
product’s success. Delphi 3 introduced
several new components to the VCL,
but my experience has shown that some
of these new controls don’t meet
Delphi’s usual standards. With that
background, I offer some lessons
learned from working with Coolbars
and Decision Cube controls.
Coolbars. My experience using
TCoolbar and its related components
(TToolbar, TSpeedbutton, and
TToolbutton) has been quite frustrating.
If you intend to use them, there are
several issues to note. Using a
TSpeedbutton on a TToolbar when the
Flat property is set to True creates a
vertical line up the center of the button
when your system has a recent version
of ctrl3d32.dll. You can avoid this
TSpeedbutton glitch by using
TToolbuttons, but these also have
problems, such as confusing and
sometimes inconsistent resizing.

Another negative of the TToolbutton
control is its reliance on using a
TImageList for images. While there are
some advantages to using imagelists, I
find it much easier to work with single
images for a toolbar button. For exam-
ple, the seemingly simple task of mov-
ing a button between toolbars will usu-
ally force you to edit the .res file that
that imagelist references. Adding addi-
40 October 1997 Delphi Informant
tional controls (such as a TComboBox)
to a TToolbar can cause problems if the
toolbar already has TToolbuttons con-
tained in it. I found changing the posi-
tioning of the combobox would often
cause “Out of Index” and “Access
Violation” errors. Then the toolbar
became unstable at design time.

I haven’t seen a freeware or shareware
“Coolbar” replacement, but for
“Office97-like” toolbars, a great solu-
tion is to use Jordan Russell’s
TToolbar97 component suite. These
freeware VCLs are my newest entries to
the “All-Wagner Team” (see the August
1997 issue of Delphi Informant).
Download them at http://members.aol.-
com/jordanr7/index.htm.
Decision Cube controls. A second type
of native VCL component to approach
cautiously is the Decision Cube controls
(TDecisionCube, TDecisionGrid, etc.).
I’ve determined, through company
experience, that these controls work
well for basic displaying of data, but if
you intend to do much more with them
— watch out. As with the Coolbars,
there are issues you should be aware of.
For instance, accessing data and dimen-
sion cells, and working with data inside
them, can be difficult; and much-needed
events, such as OnSelectCell, aren’t fully
implemented. Also, Help files and
printed documentation, in some cases,
aren’t correct in listing methods or
properties supported. Thus, be sure to
use the .INT files to get correct parame-
ters for methods and functions. The
Decision Cube controls are the lone
group of VCLs created by Borland that
don’t have source code included with
any Delphi package. Therefore, you
don’t have the same ability to correct or
modify these controls as you do with
other native VCLs.
Aside: revisiting business objects. On a
different note, I wanted to briefly touch
on the subject of business objects.
Earlier this year, I did a two-part series
on creating and using business objects
in Delphi. These two columns generat-
ed more interest on behalf of readers
than anything else I’ve written. Most
people responding to me via e-mail
have been interested in employing busi-
ness objects, but would like further
information on the specific techniques
of doing so. Other readers have been
using business objects with Delphi, and
wanted to share their ideas with others.
I am in the process of trying to link
together these Delphi developers inter-
ested in discussing business objects,
so if you have an interest, drop me a
note at rwagner@acadians.com, and
I’ll put you in touch with this group
of people. ∆

— Richard Wagner

Richard Wagner is Chief Technology
Officer of Acadia Software in the Boston,
MA area, and Contributing Editor to
Delphi Informant. He welcomes your
comments at rwagner@acadians.com.

	Table of Content
	Delphi Tools
	TCompLHA 2.0 and TCompress Component Set 3.5 Ship from SPIS Ltd
	Design Systems’ New VCL Component Collection Adds Time-Saving Features
	TurboPower Launches Abbrevia; Releases Free Delphi 3 Upgrades
	LMD Innovative Ships LMD-Tools 3.0 for Delphi

	Newsline
	Borland’s Yocam Announces New Business Strategy
	Borland Returns to Profitability
	Borland Announces JBuilder Products
	Borland Announces Entera Update
	Borland Launches AS/400 Client/Server Developer Program with IBM

	On the Cover
	The Windows Registry
	Subclassed Registry-Aware Components
	A Better Solution
	Using the Persistent Object Manager
	How It Works
	Run-Time Type Information
	The Units
	The Run-Time Implementation
	Some Additional Features
	IniOut and Where to Go from Here
	Conclusion
	Listing One — Objmgr2.pas

	Informant Spotlight
	Creating a Dynamic Compiler
	An Old, Trusty Example
	Our Formula Compiler
	Who Writes Machine Code, Anyway?
	How Do We Allocate the Code Space?
	Generating Good Code
	The Code Generator
	The Parser and Scanner
	Running the Formula
	Reviewing the Code
	Where to Go from Here
	Listing Two — Code Generator Implementation

	Greater Delphi
	The Complete Transaction
	Dwelling in Isolation
	The Case of the Phantom Platinum
	The Versioning Solution
	Crash Proof
	An Unfortunate Default
	Conclusion

	DBNavigator
	TeeChart Basics
	TeeChart Step-by-Step
	Adding Additional Series
	Controlling Series at Run Time
	Conclusion

	At Your Fingertips
	How does the parent/child relationship work for Delphi windows control?

	New & Used
	The Editor of Your Dreams
	Panels, Panels Everywhere
	Configuring and Adding New Panels
	RAPI: A Quick Overview
	Looking to the Future

	TextFile
	Exploring Delphi’s Hidden Paths
	Special Edition Using Delphi 2 and Special Edition Using Delphi 3

	File l New
	Coolbars.
	Decision Cube controls.
	Aside: revisiting business objects.

